Общие правила набора формул. Формулы и уравнения, которые изменили мир

Основные виды (численных) формул

Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение . Такое суждение может утверждать что-то о переменных, а может - о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:

Уравнения

Уравнение - формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства . Однако, важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, является уравнением, где x - переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения : в данном случае таковыми являются два числа и −1 . Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл - для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y , z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Следует отметить, что подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x . В данном элементарном случае, речь может идти скорее об определении a через x: .

Тождества

Тождество - суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций , например тождество утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце , которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например .

Приближённые равенства

В 7-8 классе изучают решение уравнений графическим способом. В это время на решение даются простые уравнения("с хорошим корнем") которые легко отыскиваются с помощью графиков, особенно на клетчатой бумаге. Но существуют примеры где с корнем немного иначе. Рассмотрим два уравнения:√х=2-х и √х=4-х. Первое уравнение имеет единственный корень х=1, поскольку графики функций у =√х и у =2-хпересекаются в одной точке А(1,1). Во втором случае графики функций у =√х-фс у =4-х также пересекаются в одной точке А(1,1), но с "плохими" координатами. С помощью чертежа, делаем вывод, что абсцисса точки В примерно равна 2,5. В таких случаях говорят не о точном, а о приближённом решении уравнения и записывают так: х≈2,5.

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши - Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.

Используемые операции

В данном разделе будут перечислены операции, используемые в алгебре , а также некоторые общеупотребительные функции из математического анализа .

Сложение и вычитание

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очередность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

Функция одного действительного аргумента или однозначная функция;

Функция нескольких аргументов или многозначная функция (график одной из самых замечательных кривых - верзьера Аньези) ;

Не дифференцируемая функция в точке (непрерывная ломаная линия не имеет касательной) ;

- целочисленная функция;

- чётная функция ;

- нечётная функция ;

Функция точки, расстояние от точки до начала (декартовых) координат;

Разрывная функция в точке ;

Параметрически заданная функция (график циклоиды) ;

Прямая и обратная функции;

Интегральное уравнение;

Ссылки

  • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.

См. также

  • Алгебраическое выражение - математическое обозначение, не выражающее законченную мысль.

Wikimedia Foundation . 2010 .

Смотреть что такое "Математическая формула" в других словарях:

    - (от лат. formula форма, правило, предписание): Математическая формула Формула в Microsoft Excel Химическая формула Эпическая формула Физическая формула Зубная формула Формула цветка Магическая формула Формула технических видов… … Википедия

    Формула произведения корангов математическая формула, выражающая коразмерность множества точек, в которых ядро производной отображения имеет заданную размерность, в виде произведения корангов данного отображения в прообразе и образе.… … Википедия

    Формула Грассмана математическая формула, описывающая размерность подпространства конечномерного пространства. Выведена немецким ученым Г. Г. Грассманом. Формулировка: Если линейное пространство V конечномерно, то конечномерными… … Википедия

    Формула Остроградского математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного… … Википедия

    Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

Основные виды (численных) формул

Как правило, в формулу входят переменные (одна или более), причём сама формула представляет собой не просто выражение, а некое суждение . Такое суждение может утверждать что-то о переменных, а может - о применяемых операциях. Точный смысл формулы зачастую подразумевается из контекста и его невозможно понять непосредственно из её вида. Можно выделить три распространённых случая:

Уравнения

Уравнение - формула, внешняя (верхняя) связка которого представляет собой бинарное отношение равенства . Однако, важная особенность уравнения заключается также в том, что входящие в него символы делятся на переменные и параметры (присутствие последних, впрочем, необязательно). Например, является уравнением, где x - переменная. Значения переменной, при которых равенство истинно, называются корнями уравнения : в данном случае таковыми являются два числа и −1 . Как правило, если уравнение на одну переменную не является тождеством (см. ниже), то корни уравнения представляют собой дискретное, чаще всего конечное (возможно и пустое) множество.

Если в уравнение входят параметры, то его смысл - для заданных параметров найти корни (то есть значения переменной, при котором равенство верно). Иногда это можно сформулировать как нахождение неявной зависимости переменной от параметра (параметров). Например понимается как уравнение на x (это обычная буква для обозначения переменной, наряду с y , z и t). Корнями уравнения является квадратный корень из a (считается, что их имеется два, разных знаков). Следует отметить, что подобная формула, сама по себе, задаёт лишь бинарное отношение между x и a и её можно понимать в обратную сторону, как уравнение на a относительно x . В данном элементарном случае, речь может идти скорее об определении a через x: .

Тождества

Тождество - суждение, верное при любых значениях переменных. Обычно, под тождеством подразумевают тождественно верное равенство, хотя снаружи тождества может стоять и неравенство или какое-либо другое отношение. Во многих случаях тождество можно понимать как некое свойство используемых в нём операций , например тождество утверждает коммутативность сложения.

С помощью математической формулы довольно сложные предложения могут быть записаны в компактной и удобной форме. Формулы, становящиеся истинными при любом замещении переменных конкретными объектами из некоторой области, называются тождественно-истинными в данной области. Например: «для любых a и b имеет место равенство ». Данное тождество можно вывести из аксиом сложения и умножения в коммутативном кольце , которые сами по себе также имеют вид тождеств.

Тождество может и не включать в себя переменные и являться арифметическим (или каким-то ещё) равенством, как например .

Приближённые равенства

В 7-8 классе изучают решение уравнений графическим способом. В это время на решение даются простые уравнения("с хорошим корнем") которые легко отыскиваются с помощью графиков, особенно на клетчатой бумаге. Но существуют примеры где с корнем немного иначе. Рассмотрим два уравнения:√х=2-х и √х=4-х. Первое уравнение имеет единственный корень х=1, поскольку графики функций у =√х и у =2-хпересекаются в одной точке А(1,1). Во втором случае графики функций у =√х-фс у =4-х также пересекаются в одной точке А(1,1), но с "плохими" координатами. С помощью чертежа, делаем вывод, что абсцисса точки В примерно равна 2,5. В таких случаях говорят не о точном, а о приближённом решении уравнения и записывают так: х≈2,5.

Неравенства

Формула-неравенство может пониматься в обоих описанных в начале раздела смыслах: как тождество (например, неравенство Коши - Буняковского) или же, подобно уравнению, как задача на отыскание множества (а точнее, подмножества области определения), которому может принадлежать переменная, или переменные.

Используемые операции

В данном разделе будут перечислены операции, используемые в алгебре , а также некоторые общеупотребительные функции из математического анализа .

Сложение и вычитание

Возведение в степень

Элементарные функции

Абсолютная величина, знак и т. п.

Приоритет операций и скобки

Приоритет, ранг или старшинство операции или оператора - формальное свойство оператора/операции, влияющее на очередность его выполнения в выражении с несколькими различными операторами при отсутствии явного (с помощью скобок) указания на порядок их вычисления. Например, операцию умножения обычно наделяют бо́льшим приоритетом, чем операцию сложения, поэтому в выражении будет получено сначала произведение y и z, а потом уже сумма.

Примеры

Например:

Функция одного действительного аргумента или однозначная функция;

Функция нескольких аргументов или многозначная функция (график одной из самых замечательных кривых - верзьера Аньези) ;

Не дифференцируемая функция в точке (непрерывная ломаная линия не имеет касательной) ;

- целочисленная функция;

- чётная функция ;

- нечётная функция ;

Функция точки, расстояние от точки до начала (декартовых) координат;

Разрывная функция в точке ;

Параметрически заданная функция (график циклоиды) ;

Прямая и обратная функции;

Интегральное уравнение;

Ссылки

  • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств.

См. также

  • Алгебраическое выражение - математическое обозначение, не выражающее законченную мысль.

Wikimedia Foundation . 2010 .

  • Перволюди
  • Сцепление (механика)

Смотреть что такое "Математическая формула" в других словарях:

    Формула - (от лат. formula форма, правило, предписание): Математическая формула Формула в Microsoft Excel Химическая формула Эпическая формула Физическая формула Зубная формула Формула цветка Магическая формула Формула технических видов… … Википедия

    Формула произведения корангов - Формула произведения корангов математическая формула, выражающая коразмерность множества точек, в которых ядро производной отображения имеет заданную размерность, в виде произведения корангов данного отображения в прообразе и образе.… … Википедия

    Формула Грассмана - Формула Грассмана математическая формула, описывающая размерность подпространства конечномерного пространства. Выведена немецким ученым Г. Г. Грассманом. Формулировка: Если линейное пространство V конечномерно, то конечномерными… … Википедия

    Формула Гаусса-Остроградского - Формула Остроградского математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного… … Википедия

    МАТЕМАТИЧЕСКАЯ ЛОГИКА - одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

Одним из наиболее сложных видов набора является набор математических формул. Формулы представляют собой тексты, включающие шрифты на русской, латинской и греческой основах, прямого и курсивного, светлого, полужирного начертания, с большим числом математических и других знаков, индексов на верхнюю и нижнюю линии шрифта и различных крупнокегельных знаков. Ассортимент шрифтов для набора формул минимально составляет 2 тыс. знаков. Таблица символов в WORD-98 включает 1148 символов.

Основное отличие формульного набора от всех других видов набора состоит в том, что набор формулы в ее классическом виде производится не параллельными строками, а занимает определенную часть площади полосы.

Формула - математическое или химическое выражение, в котором при помощи цифр, символов и специальных знаков в условной форме выражается соотношение между определенными величинами.

Цифры - знаки, которыми обозначаются или выражаются числа (количества). Цифры бывают арабские и римские.

Арабские цифры : 1, 2. 3, 4, 5, 6, 7, 8, 9, 0. Арабские цифры меняют свое значение в зависимости оттого места, которое они занимают в ряду цифровых знаков. Арабские цифры делятся на два класса - 1-й - единицы, десятки, сотни; 2-й - тысячи, десятки тысяч, сотни тысяч и т.д.

Римские цифры . Основных цифровых знаков семь: I - единица, V - пять, X - десять, L - пятьдесят, С - сто, D - пятьсот, М - тысяча. Римские цифры имеют постоянное значение, поэтому числа получаются сложением или вычитанием цифровых знаков. Например: 28 = XXVIII (10 + 10 + 5 + 1 + 1+ 1); 29 = XXIX (10 + 10 -1 + 10); 150 = CL (100 + 50); 200 = СС (100 + 100); 1980 = MDCCCCLXXX (1000 + 500 + 100 + 100 + 100 + 100 + 50 + 10+ 10 + 10); 2002 = MMII (1000 + 1000 + 1 + 1).

Римскими цифрами обычно обозначают столетия (ХV1в.), номера томов (том IX), глав (глава VII), частей (часть II) и т.д.

Символы - буквенные выражения, входящие в состав формулы (например, математические символы: l - длина, λ - частота отказов (усадка), π - отношение длины окружности к диаметру и т.д.; химические символы: Аl - алюминий, РЬ - свинец, Н - водород и т.д.).

Коэффициенты - цифры, стоящие перед символами, например 2Н 2 О; 4sinx. Символы и цифры часто имеют индексы надстрочные (на верхнюю линию) и подстрочные (на нижнюю линию), которые либо поясняют значение индексов, (например, λ с - линейная усадка, G T - теоретическая масса отливки, С ф -фактическая масса отливки); либо указывают на математические действия (например, х 2 , у 3 , z -2 и т.д.); либо указывают число атомов в молекуле и число зарядов ионов в химических формулах (например, СН 4). В формулах встречаются также индексы к индексам: верхний индекс к верхнему индексу - верхний супраиндекс , нижний индекс к верхнему индексу - верхний субиндекс , верхний индекс к нижнему индексу - нижний супраиндекс и нижний индекс к нижнему индексу - нижний субиндекс.

Знаки математических действий и соотношений - сложение « + », вычитания « - », равенства « = », умножения «х»; действие деление обозначается горизонтальной линейкой, которая будет называться дробной или делительной линейкой..

(9.12)

Основная строка - строка, в которой размещены основные знаки математических действий и соотношений.

Классификация формул .

Математические формулы разделяются по сложности набора, зависящей от состава формулы (однострочные, двухстрочные, многострочные) и насыщенности ее различными математическими знаками и символами, индексами, субиндексами, супраиндексами и приставными знаками. По сложности набора все математические формулы условно можно разделить на четыре основные группы и одну дополнительную:

1 группа. Однострочные формулы (9.13-9.16);

2 группа. Двухстрочные формулы (9.17-9.19). Фактически эти ф-лы состоят из 3-х строк;

3 группа. Трехстрочные формулы (9.20-9.23). Фактически эти ф-лы состоят из 5-и строк;

4 группа. Многострочные формулы (9.24-9.26);

Дополнительная группа (9.27-9.29).

При выделении формул в группы сложности учитывалась трудоемкость набора и время, затрачиваемое на набор.

II группа. Двустрочные формулы :

(9.29)

Правила набора текста математических формул .

При наборе математического текста необходимо соблюдать следующие основные правила.

Набирать цифры в формулах прямым шрифтом, например 2ах; Зу .

Сокращенные тригонометрические и математические термины , например sin , cos , tg , ctg , arcsin . Ig , lim и т.д., набирать шрифтом латинского алфавита прямого светлого начертания.

Сокращенные слова в индексе набирать русским шрифтом прямого начертания на нижнюю линию.

Сокращенные наименования физических, метрических и технических единиц измерения , обозначенные буквами русского алфавита, набирать в тексте прямым шрифтом без точек, например 127 В, 20 кВт . Эти же наименования, обозначенные буквами латинского алфавита, набирать также прямым шрифтом без точек, например 120 V , 20 kW , если нет в оригинале других указаний.

Символы (или цифры и символы ), следующие один за другим и не разделенные какими-либо знаками, набирать без отбивки, например 2ху; 4у .

Знаки препинания в формулах набирать прямым светлым шрифтом. Запятые внутри формулы отбивать от последующего элемента формулы на 3 п .; от предыдущего элемента формулы запятая не отбивается; от предшествующей подстрочной литеры запятая отбивается на 1 п .

Многоточие на нижнюю линию набирать точками с разбивкой на полукегельную. От предыдущего и последующего элементов формулы точки отбивать тоже полукегельной, например:

(9.30)

Символы (или цифры и символы), следующие один за другим, не разделять, а набирать без отбивки.

Знаки математических действий и соотношений, а также знаки геометрических образов , как, например, = ,< ,> , + , - , отбивать от предыдущих и последующих элементов формулы на 2 п

Сокращенные математические термины отбивать от предыдущих и последующих элементов формулы на 2 п.

Показатель степени , следующий непосредственно за математическим термином, набирать вплотную к нему, а отбивку делать после показателя степени.

Буквы « d » (в значении «дифференциал» ), δ (в значении «частная производная») и ∆ (в значении «приращение») отбивать от предшествующего элемента формулы на 2 п., от последующего символа указанные знаки не отбиваются.

Сокращенные наименования физических и технических единиц измерения и метрических мер в формулах отбивать на 3 п. от цифр и символов, к которым они относятся.

Знаки ° , " , " отбивать от последующего символа (или цифры) на 2 п., от предыдущего символа указанные знаки не отбиваются.

Знаки препинания, следующие за формулой , не отбиваются от нее.

Строку отточий в формулах набирают точками, используя полукегельную отбивку между ними.

Формулы, набранные в подбор с текстом, отбивать от предыдущего и последующего текстов полукегельной; эта отбивка при выключке строки не уменьшается, а увеличивается. Так же выключают формулы, следующие одна за другой в подбор с текстом.

Несколько формул, помещенных в одной строке, выключенной по центру, отбивать друг от друга пробелом не менее кегельной и не более 1/2 кв.

Мелкие пояснительные формулы, набираемые в одну строку с основной формулой, выключать в правый край строки, или отбивать на две кегельные от основного выражения (если нет иных указаний в оригинале).

Порядковые номера формул набирать цифрами того же кегля, что и однострочные формулы, и выключать в правый край, например:

Х+У=2 (9.31)

Если формула не умещается в формат строки, а переносить ее нельзя, допускается ее набор меньшим кеглем.

Переносы в формулах нежелательны. Во избежание переноса допускается уменьшение пробелов между элементами формулы. Если уменьшением пробелов не удается довести формулу до нужного формата строки, то переносы допускаются:

    на знаках соотношения между левой и правой частями формулы (= ,>,< );

    на знаках сложения или вычитания (+, - );

    на знаках умножения (х). При этом следующая строка начинается со знака, на котором закончилась формула в предыдущей строке. При переносе формул необходимо смотреть за тем, чтобы переносимая часть не была очень маленькой, не разрывались выражения, заключенные в скобки, выражения, относящиеся к знакам корня, интеграла, суммы; не допускается разделение индексов, показателей степеней, дробей.

В нумерованных формулах номер формулы в случае ее переноса ставят на уровне центральной строки перенесенной части формулы. Если порядковая нумерация на умещается в строке, ее помещают в следующей и выключают в правый край. Формулы, числитель или знаменатель которых не умещается в заданном формате набора, набирают шрифтом меньшего кегля, либо шрифтом этого же кегля, но в две строки с переносом.

Если при переносе формулы разрывается делительная линейка или линейка корня, то место разрыва каждой линейки указывают стрелками.

Стрелки нельзя устанавливать около математических знаков.

Однострочные и многострочные формулы.

В однострочных формулах основную строку (без индексов и приставных знаков) следует набирать шрифтом того же кегля, что и основной текст издания (если нет других указаний в оригинале).

Середина кегля всех букв, цифр и знаков основной строки однострочной формулы должна находиться на одной линии, которая носит название средней. При определении средней линии подключки к символам основной строки в расчет не принимаются.

Индексы и показатели степени в многострочной формуле выравниваются по основной линии шрифта.

Однострочные формулы выключаются на середину формата, т.е. в красную строку (если нет особых указаний в оригинале) и отбиваются одна от другой на 4 - 6 п.

Группа формул с однотипной левой или правой частью выравнивается по знаку соотношения, при этом сначала набирается самая длинная формула и выключается в красную строку, остальные равняются по ней, например:

(9.32)

При наборе многострочных формул, если основной текст набирают кг. 10 п., то центральную строку набирают корпусом, числитель и знаменатель - петитом.

Линейка, отделяющая числитель от знаменателя в двухстрочной формуле, по длине должна быть равна более длинному из этих выражений или длиннее его не более чем на 2 - 4 п. Минимальная длина линейки равна кеглю шрифта, которым набирается дробь. Кегль линейки - 2 п., тонкая.

В многострочной дроби основная линейка должна быть на 4 п. длиннее делительных линеек в числителе и знаменателе, например:

(9.33)

Числитель и знаменатель выключаются посередине основной делительной линейки.

Числитель и знаменатель от линейки не отбиваются, исключение составляет знаменатель, в котором преобладают прописные буквы и показатели степени.

Пояснения к формулам, которые начинаются словом «где», набирают или в одну строку с первым символом и отбивкой от него на полукегельную, тогда все последующие пояснения выравниваются по линии тире, например:

А - количество раствора;

В - количество добавок;

или с выключкой слова «где» в левый край отдельной строки, например:

А - количество раствора;

В - количество добавок.

Индексы и показатели степени.

В формулах встречаются индексы первого порядка (индексы) и индексы второго порядка (субиндексы и супраиндексы - индекс к индексу).

В большинстве формул, однострочных и многострочных, содержатся индексы 1-го порядка: надстрочные и подстрочные один под другим.

По своему размеру индексы заметно меньше буквы и цифр основной строки, кроме того, они должны выступать за линию шрифта основной строки. При наборе основной строки шрифтом кг. 10 п. и 8 п. индексы набирают шрифтом кг. 6 п., при наборе основной строки шрифтом кг. 6 п. очко индексов и показателей степени должно быть 4 п., при этом индекс опускают ниже основной строки на 2 п., а показатели степени поднимают выше строки на 2 п.

Двойные (верхний и нижний) индексы должны располагаться строго один под другим.

Супраиндексы и субиндексы набираются шрифтом кг. 4 п.

Индексы и показатели степени набираются вплотную к выражению, к которому они относятся. Если подынтегральное выражение в степени однострочное, знак интеграла набирается шрифтом кг. 10 п., если двухстрочное - шрифтом кг. 12 п., например:

(9.34)

Знак суммы Σ в подключке на верхнюю линию при однострочном показателе степени набирается шрифтом кг. 6 п. или 8 п., при двухстрочном - шрифтом кг. 10 п., например:

(9.35)

Скобки (круглые, квадратные и фигурные) должны быть прямого начертания, кегль скобок выбирается таким, чтобы они могли закрыть все выражение, заключенное в них. Скобки отбиваются от предшествующих символов в формуле на 2 п, от символов, заключенных в скобки, скобки не отбиваются, показатель степени, помещенный за скобкой, от скобки не отбивается. Подряд идущие скобки друг от друга не отбиваются.

Крупнокегельные знаки.

Знак корня должен быть по кеглю на 2 п. больше кегля шрифта, которым набирается подкоренное выражение.

Линейка корня набирается двухпунктовой линейкой, по длине равной подкоренному выражению или на 1-2 п. длинее,

(9.36)

Знаки Σ , S (знаки суммы) и П (знак произведения) набираются шрифтом прямого начертания большего кегля, так при наборе формул кг. 8 или 10п.-указанные знаки набираются шрифтом кг. 12 п., при наборе шрифтом кг. 6 п. - приставные знаки в однострочных формулах набираются шрифтом кг. 10 п., в двухстрочных - 16 - 20 п. в зависимости от высоты формулы, а в многострочных формулах - шрифтом кегля, позволяющего перекрыть меньшую по высоте часть формулы, если числитель и знаменатель формулы неодинаковые по высоте, например (ф-ла 9.37) :

Индексы над и под знаками Σ , S, П набираются шрифтом кг. 6 п. и ставятся на середине знака, например:

(9.39)

Знаки Σ , S (знаки суммы) и П (знак произведения) отбиваются от предыдущих и последующих элементов формулы на 2 п.

Знак интеграла набирается шрифтом большего кегля следующим образом: при наборе однострочной формулы шрифтом кг. 6 п. - набирается шрифтом кг. 12 п.; при наборе однострочной формулы шрифтом кг. 8 п. или 10 п. - набирается шрифтом кг. 14 или 16 п.; в двухстрочных формах - набирается шрифтом, кегль которого выбирается в зависимости от высоты подынтегрального выражения, причем середина знака всегда должна находиться на средней линии формулы, например:

(9.40)

Кегль интеграла без подключек при высоте формулы 36 п. должен быть 28 п., при высоте формулы 48 п. - 36. Индексы над и под знаками интеграла также набираются шрифтом кг. 6 п, приставляются вплотную к и выключаются по его середине.

Интеграл так же, как и знаки Σ , S (знаки суммы) и П (знак произведения), отбивается от предыдущих и последующих элементов формулы на 2 п., причем эта отбивка в случае длинных индексов может быть увеличена до 12 п. Друг от друга знаки интеграла не отбиваются.

Вертикальные линейки одинарные или двойные должны быть точно равны высоте выражения, заключенного в них, например:

(9.41)

Пробел между строками в группе формульных выражений должен быть равен полукегельной, между колонками цифр - не менее кегельной.

Линейки выбирают кеглем 2 п.

При наборе матриц вертикальные линейки берут двухпунктовые двойные, например:

(9.42)

Формульные выражения в колонках матриц выключаются в красную строку или выравниваются по левому краю колонок.

Вертикальные линейки отбиваются от выражений, заключенных в них, на полукегельную, фигурные скобки - на 6 п.

Все горизонтальные линейки в формулах набираются всегда двухпукнтовыми тонкими.

Длина дробной линейки должна быть такой, чтобы наибольшая часть дроби (числитель и знаменатель) была перекрыта линейкой.

3. Вот так решают уравнения блондинки!


4. Математика в Зазеркалье

Эта надпись, которую я сделал несколько лет назад, наверное, самое короткое доказательство того, что... 2 = 3. Приставьте к ней сверху зеркало (или посмотрите ее на просвет), и вы увидите, как «двое» превратятся в «трое».

5. Буквомешалка

Еще одна необычная формула:

eleven + two = twelve + one .

Оказывается, на английском равенство 11 + 2 = 12 + 1 верно, даже если его записать словами - «сумма» букв слева и справа одинакова! Это значит, что правая часть этого равенства - анаграмма от левой, то есть получается из нее перестановкой букв.

Подобные, хотя и менее интересные буквенные равенства можно получать и на русском языке:

пятнадцать + шесть = шестнадцать + пять .

6. Пи... или не Пи?..

С 1960 до 1970 года основной национальный напиток, называвшийся «Московская особая водка» стоил: пол-литра 2,87, а четвертинка 1,49. Эти цифры знало, наверное, почти всё взрослое население СССР. Советские математики заметили, что если цену поллитровки возвести в степень, равную цене четвертинки, то получится число «Пи»:

1,49 2,87 ??

(Сообщил Б. С. Горобец).

Уже после выхода первого издания книги доцент химфака МГУ Леензон И. А. прислал мне такой любопытный комментарий к этой формуле: «...много лет назад, когда не было калькуляторов, а мы на физфаке сдавали трудный зачет по логарифмической линейке (!) (сколько раз нужно двигать подвижную линейку вправо-влево?), я с помощью точнейших отцовых таблиц (он был геодезистом, экзамен по высшей геодезии ему снился всю жизнь) узнал, что рупь-сорок-девять в степени два-восемьдесят-семь равно 3,1408. Меня это не удовлетворило. Не мог наш советский Госплан действовать столь грубо. Консультации в Министерстве торговли на Кировской показали, что все расчеты цен в государственном масштабе делались с точностью до сотых долей копейки. Но назвать точные цифры мне отказались, ссылаясь на секретность (меня это тогда удивило - какая может быть секретность в десятых и сотых долях копейки). В начале 1990-х мне удалось получить в архивах точные цифры по стоимости водки, которые к тому времени были рассекречены специальным декретом. И вот что оказалось: четвертинка: 1 рубль 49,09 коп. В продаже - 1,49 руб. Поллитровка: 2 рубля 86,63 коп. В продаже - 2,87 руб. Воспользовавшись калькулятором я легко выяснил, что в таком случае четвертинка в степени пол-литра дает (после округления до 5 значащих цифр) как раз 3,1416! Остается только удивляться математическим способностям работников советского Госплана, которые (я в этом ни секунды не сомневаюсь) специально подогнали расчетную стоимость самого популярного напитка под заранее известный результат».

Какой известный со школы математик зашифрован в этом ребусе?

8. Теория и практика

Математику, физику и инженеру предложили такую задачу: «Юноша и девушка стоят у противоположных стен зала. В какой-то момент они начинают идти навстречу другу и каждые десять секунд преодолевают половину расстояния между ними. Спрашивается, через какое время они достигнут друг друга?»

Математик, не раздумывая, ответил:

Никогда.

Физик, немного подумав, сказал:

Через бесконечное время.

Инженер после долгих расчетов выдал:

Примерно через две минуты они будут достаточно близки для любых практических целей.

9. Формула красоты от Ландау

На следующую пикантную формулу, приписываемую Ландау, большому любителю слабого пола, обратил мое внимание известный Ландаувед профессор Горобец.

Как нам сообщил доцент МГУИЭ А. И. Зюльков, он слышал, что Ландау вывел следующую формулу показателя женской привлекательности:

где K - обхват по бюсту; M - по бедрам; N - по талии, T - рост, всё в см; P - вес в кг.

Так, если принять параметры для модели (1960-х гг.) приблизительно: 80-80-60-170-60 (в указанной выше последовательности величин), то по формуле получим 5. Если же принять параметры «антимодели», например: 120-120-120-170-60, то получим 2. Вот в этом интервале школьных оценок и работает, грубо говоря, «формула Ландау».

(Цит. по книге: Горобец Б . Круг Ландау. Жизнь гения. М.: Издательство ЛКИ/URSS, 2008.)

10. Знать бы то расстояние...

Еще одно наукообразное рассуждение по поводу женской привлекательности, приписываемое Дау.

Определим привлекательность женщины как функцию от расстояния до нее. При бесконечном значении аргумента эта функция обращается в нуль. С другой стороны, в точке нуль она также равна нулю (речь идет о внешней привлекательности, а не об осязательной). Согласно теореме Лагранжа, неотрицательная непрерывная функция, принимающая на концах отрезка нулевые значения, имеет на этом отрезке максимум. Следовательно:

1. Существует расстояние, с которого женщина наиболее привлекательна.

2. Для каждой женщины это расстояние свое.

3. От женщин надо держаться на расстоянии.

11. Лошадиное доказательство

Теорема: Все лошади одного цвета.

Доказательство. Докажем утверждение теоремы по индукции.

При n = 1, то есть для множества, состоящего из одной лошади, утверждение, очевидно, выполнено.

Пусть утверждение теоремы верно при n = k . Докажем, что оно верно и при n = k + 1. Для этого рассмотрим произвольное множество из k + 1 лошадей. Если убрать из него одну лошадь, то их останется k . По предположению индукции все они одного цвета. Теперь вернем на место убранную лошадь и заберем какую-либо другую. Опять-таки по предположению индукции и эти k оставшихся лошадей одного цвета. Но тогда и все k + 1 лошадей будут одного цвета.

Отсюда, согласно принципу математической индукции, все лошади одного цвета. Теорема доказана.

12. Немного о крокодилах

Еще одна замечательная иллюстрация применения математических методов к зоологии.

Теорема: Крокодил более длинный, чем широкий.

Доказательство. Возьмем произвольного крокодила и докажем две вспомогательные леммы.

Лемма 1: Крокодил более длинный, чем зеленый.

Доказательство. Посмотрим на крокодила сверху - он длинный и зеленый. Посмотрим на крокодила снизу - он длинный, но не такой зеленый (на самом деле он темно-серый).

Следовательно, лемма 1 доказана.

Лемма 2: Крокодил более зеленый, чем широкий.

Доказательство. Посмотрим на крокодила еще раз сверху. Он зеленый и широкий. Посмотрим на крокодила сбоку: он зеленый, но не широкий. Это доказывает лемму 2.

Утверждение теоремы, очевидно, следует из доказанных лемм.

Обратная теорема («Крокодил более широкий, чем длинный») доказывается аналогично.

На первый взгляд, из обеих теорем следует, что крокодил - квадратный. Однако, поскольку неравенства в их формулировках строгие, то настоящий математик сделает единственно правильный вывод: КРОКОДИЛОВ НЕ СУЩЕСТВУЕТ!

13. Опять индукция

Теорема: Все натуральные числа равны между собой.

Доказательство. Необходимо доказать, что для любых двух натуральных чисел A и B выполнено равенство A = B . Переформулируем это в таком виде: для любого N > 0 и любых A и B , удовлетворяющих равенству max(A , B ) = N , должно выполняться и равенство A = B .

Докажем это по индукции. Если N = 1, то A и B , будучи натуральными, оба равны 1. Поэтому A = B .

Предположим теперь, что утверждение доказано для некоторого значения k . Возьмем A и B такими, чтобы max(A , B ) = k + 1. Тогда max(A –1, B –1) = k . По предположению индукции отсюда следует, что (A –1) = (B –1). Значит, A = B .

14. Все обобщения неправильны!

Любители лингвистических и математических головоломок наверняка знают про рефлексивные, или самоописывающиеся (не подумайте ничего плохого), самоотносимые слова, фразы и числа. К последним, например, относится число 2100010006, в котором первая цифра равна количеству единиц в записи этого числа, вторая - количеству двоек, третья - количеству троек, ..., десятая - количеству нулей.

К самоописывающимся словам относится, скажем, слово двадцатиоднобуквенное , придуманное мной несколько лет назад. В нем действительно 21 буква!

Самоописывающихся фраз известно великое множество. Один из первых примеров на русском придумал много лет назад знаменитый карикатурист и словесный остроумец Вагрич Бахчанян: В этом предложении тридцать две буквы . Вот несколько других, придуманных гораздо позже: 1. Семнадцать буковок . 2. В этом предложении есть ошибка, расположенная в канце . 3. Это предложение состояло бы из семи слов, если было бы на семь слов короче . 4. Вы находитесь под моим контролем, поскольку вы будете читать меня, пока не дочитаете до конца . 5. ...Это предложение начинают и заканчивают три точки .

Есть и более сложные конструкции. Полюбуйтесь, например, на вот этого монстра (см. заметку С. Табачникова «У попа была собака» в журнале «Квант», № 6, 1989): В этой фразе два раза встречается слово «в», два раза встречается слово «этой», два раза встречается слово «фразе», четырнадцать раз встречается слово «встречается», четырнадцать раз встречается слово «слово», шесть раз встречается слово «раз», девять раз встречается слово «раза», семь раз встречается слово «два», три раза встречается слово «четырнадцать», три раза встречается слово «три», два раза встречается слово «девять», два раза встречается слово «семь», два раза встречается слово «шесть» .

Через год после публикации в «Кванте» И. Акулич придумал самоописывающуюся фразу, описывающую не только слова в нее входящие, но и знаки препинания: Фраза, которую Вы читаете, содержит: два слова «Фраза», два слова «которую», два слова «Вы», два слова «читаете», два слова «содержит», двадцать пять слов «слова», два слова «слов», два слова «двоеточие», два слова «запятых», два слова «по», два слова «левых», два слова «и», два слова «правых», два слова «кавычек», два слова «а», два слова «также», два слова «точку», два слова «одно», два слова «одну», двадцать два слова «два», три слова «три», два слова «четыре», три слова «пять», четыре слова «двадцать», два слова «тридцать», одно двоеточие, тридцать запятых, по двадцать пять левых и правых кавычек, а также одну точку .

Наконец, еще через несколько лет все в том же «Кванте», появилась заметка А. Ханяна, в которой приводилась фраза, скрупулезно описывающая все свои буковки: В этой фразе двенадцать В, две Э, семнадцать Т, три О, две Й, две Ф, семь Р, четырнадцать А, две 3, двенадцать Е, шестнадцать Д, семь Н, семь Ц, тринадцать Ь, восемь С, шесть М, пять И, две Ч, две Ы, три Я, три Ш, две П .

«Явно чувствуется, что не хватает еще одной фразы - которая рассказывала бы и о всех своих буквах, и о знаках препинания», написал в частном письме ко мне И. Акулич, породивший одного из приведенных ранее монстров. Возможно, эту весьма непростую задачу решит кто-либо из наших читателей.

15. «И гений - парадоксов друг...»

В продолжение предыдущей темы стоит упомянуть про рефлексивные парадоксы.

В уже упоминавшейся ранее книге Дж. Литлвуда «Математическая смесь» справедливо говорится, что «все рефлексивные парадоксы являются, конечно, превосходными шутками». Там же приводятся два из них, которые я позволю себе процитировать:

1. Должны существовать (положительные) целые числа, которые не могут быть заданы фразами, состоящими менее, чем из шестнадцати слов. Любое множество положительных целых чисел содержит наименьшее число, и поэтому существует число N , «наименьшее целое число, которое не может быть задано фразой, состоящей из менее, чем шестнадцати слов». Но эта фраза содержит 15 слов и определяет N .

2. В журнале Spectator был объявлен конкурс на тему «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» Первый приз получил ответ:

Наш второй конкурс

Первый приз во втором конкурсе этого года присужден мистеру Артуру Робинсону, остроумный ответ которого без натяжки должен быть признан наилучшим. Его ответ на вопрос: «Что бы Вы с наибольшим удовольствием прочли, раскрыв утреннюю газету?» был озаглавлен «Наш второй конкурс», но из-за лимитирования бумаги мы не можем напечатать его полностью.

16. Палиндроматика

Есть такие удивительные фразы, которые читаются одинаково и слева направо и справа налево. Одну наверняка знают все: А роза упала на лапу Азора . Именно ее просила написать в диктанте неуча Буратино капризная Мальвина. Называются такие взаимообратные фразы палиндромами, что в переводе с греческого означает «бегущий назад, возвращающийся». Вот еще несколько примеров: 1. Лилипут сома на мосту пилил . 2. Лезу на санузел . 3. Лег на храм, и дивен и невидим архангел . 4. Нажал кабан на баклажан . 5. Муза, ранясь шилом опыта, ты помолишься на разум . (Д. Авалиани). 6. Уж редко рукою окурок держу ... (Б. Гольдштейн) 7. Учуя молоко, я около мяучу . (Г. Лукомников). 8. Он верба, но она - бревно . (С. Ф.)

А интересно, есть ли палиндромы в математике? Для ответа на этот вопрос попробуем перенести идею взаимообратного, симметричного прочтения на числа и формулы. Оказывается, это не так уж и трудно. Познакомимся лишь с несколькими характерными примерами из этой палиндромной математики, палиндроматики . Оставляя в стороне палиндромные числа - например, 1991 , 666 и т.д. - обратимся сразу к симметричным формулам.

Попытаемся для начала решить такую задачу: найти все пары таких двузначных чисел

(x 1 - первая цифра, y 1 - вторая цифра) и

чтобы результат их сложения не менялся в результате прочтения суммы справа налево, т.е.

Например, 42 + 35 = 53 + 24.

Задача решается тривиально: сумма первых цифр у всех таких пар чисел равна сумме их вторых цифр . Теперь можно без труда строить подобные примеры: 76 + 34 = 43 + 67, 25 + 63 = 36 + 52 и так далее.

Рассуждая аналогичным образом, можно легко решить такую же задачу для остальных арифметических действий.

В случае разности, т.е.

получаются следующие примеры: 41 – 32 = 23 –14, 46 – 28 = 82 – 64, ... - суммы цифр у таких чисел равны (x 1 + y 1 = x 2 + y 2 ).

В случае умножения имеем: 63 48 = 84 36, 82 14 = 41 28, ... - при этом произведение первых цифр у чисел N 1 и N 2 равно произведению их вторых цифр (x 1 x 2 = y 1 y 2 ).

Наконец, для деления получаем такие примеры:

В этом случае произведение первой цифры числа N 1 на вторую цифру числа N 2 равно произведению двух других их цифр, т.е. x 1 y 2 = x 2 y 1 .

17. Антисоветская теорема

Доказательство следующей «теоремы», появившейся в эпоху «недоразвитого социализма», опирается на популярные тезисы тех лет относительно роли Коммунистической партии.

Теорема. Роль партии - отрицательна.

Доказательство. Хорошо известно, что:

1. Роль партии непрерывно возрастает.

2. При коммунизме, в бесклассовом обществе, роль партии будет нулевой.

Таким образом, имеем непрерывно возрастающую функцию, стремящуюся к 0. Следовательно, она отрицательна. Теорема доказана.

18. Детям до шестнадцати решать запрещается

Несмотря на кажущуюся абсурдность следующей задачи, у нее, тем не менее, есть вполне строгое решение.

Задача. Мама старше сына на 21 год. Через шесть лет она будет старше его в пять раз. Спрашивается: ГДЕ ПАПА?!

Решение. Пусть X - возраст сына, а Y - возраст мамы. Тогда условие задачи записывается в виде системы двух простых уравнений:

Подставляя Y = X + 21 во второе уравнение, получим 5X + 30 = X + 21 + 6, откуда X = –3/4. Таким образом, сейчас сыну минус 3/4 года, т.е. минус 9 месяцев. А это значит, что папа в данный момент находится на маме!

19. Неожиданный вывод

Хорошо известно ироническое выражение «Если ты такой умный, то почему ты такой бедный?», применимое, увы, очень ко многим. Оказывается, у этого грустного феномена есть строгое математическое обоснование, опирающееся на столь же бесспорные истины.

А именно, начнем с двух всем известных постулатов:

Постулат 1: Знание = Сила.

Постулат 2: Время = Деньги.

Кроме того, любой школьник знает, что

Путь s = Скорость x Время = Работа: Сила ,

Работа: Время = Сила x Скорость (*)

Подставляя значения для «времени» и «силы» из обоих постулатов в (*), получим:

Работа: (Знание x Скорость) = Деньги (**)

Из полученного равенства (**) видно, что устремляя «знание» или «скорость» к нулю, мы можем получить за любую «работу» сколь угодно большие деньги.

Отсюда вывод: чем глупее и ленивее человек, тем больше денег он сможет заработать.

20. Математическая игра Ландау

Несколько лет назад в журнале «Наука и жизнь» (№1, 2000) была опубликована вызвавшая огромный интерес читателей заметка профессора Б. Горобца, посвященная замечательной игре-головоломке, которую придумал академик Ландау, чтобы не скучать во время поездок в машине. Поиграть в эту игру, в которой датчиком случайных чисел служили номера проносящихся мимо машин (тогда эти номера состояли из двух букв и двух пар цифр), он часто предлагал своим спутникам. Суть игры заключалась в том, чтобы с помощью знаков арифметических действий и символов элементарных функций (т.е. +, –, x, :, v, sin, cos, arcsin, arctg, lg и т.д.) привести к одному и тому же значению эти два двузначных числа из номера попутной машины. При этом допускается использование факториала (n ! = 1 x 2 x ... х n ), но не допускается использование секанса, косеканса и дифференцирования.

Например, для пары 75–33 искомое равенство достигается следующим образом:

а для пары 00–38 - так:

Однако не все номера решаются столь просто. Некоторые из них (например 75–65) не поддавались и автору игры, Ландау. Поэтому возникает вопрос о каком-либо универсальном подходе, некоей единой формуле, позволяющей «решать» любую пару номеров. Этот же вопрос задавал Ландау и его ученик проф. Каганов. Вот что он, в частности, пишет: «Всегда ли можно сделать равенство из автомобильного номера?» - спросил я у Ландау. - «Нет», - ответил он весьма определенно. - «Вы доказали теорему о несуществовании решения?» - удивился я. - «Нет», - убежденно сказал Лев Давидович, - «но не все номера у меня получались».

Однако такие решения были найдены, причем одно из них еще при жизни самого Ландау.

Харьковский математик Ю. Палант предложил для уравнивания пар чисел формулу

позволяющую в результате неоднократного применения выразить любую цифру через любую меньшую. «Я привел доказательство Ландау», - пишет об этом решении Каганов. - «Оно ему очень понравилось..., и мы полушутя, полусерьезно обсуждали, не опубликовать ли его в каком-нибудь научном журнале».

Однако в формуле Паланта используется «запрещенный» ныне секанс (вот уже более 20 лет он не входит в школьную программу), а посему ее нельзя считать удовлетворительной. Впрочем, мне удалось это легко исправить с помощью модифицированной формулы

Полученная формула (опять-таки при необходимости ее надо применять несколько раз) позволяет выразить любую цифру через любую большую цифру, не применяя других цифр, что, очевидно, исчерпывает задачу Ландау.

1. Пусть среди цифр нет нулей. Составим из них два числа ab и cd , (это, разумеется, не произведения). Покажем, что при n ? 6:

sin[(ab )!]° = sin[(cd )!]° = 0.

Действительно, sin(n !)° = 0, если n ? 6, так как sin(6!)° = sin720° = sin(2 x 360°) = 0. Дальше любой факториал получается умножением 6! на последующие целые числа: 7! = 6! x 7, 8! = 6! x 7 x 8 и т.д., давая кратное число раз по 360° в аргументе синуса, делая его (и тангенс тоже) равным нулю.

2. Пусть в какой-то паре цифр есть ноль. Умножаем его на соседнюю цифру и приравниваем к синусу факториала в градусах, взятого от числа в другой части номера.

3. Пусть в обеих частях номера имеются нули. При умножении на соседние цифры они дают тривиальное равенство 0 = 0.

Разбиение общего решения на три пункта с умножением на ноль в пунктах 2 и 3 связано с тем, что sin(n !)° ? 0, если n < 6».

Разумеется, подобные общие решения лишают игру Ландау изначальной прелести, представляя лишь абстрактный интерес. Поэтому попробуйте поиграть с отдельными трудными номерами, не используя универсальных формул. Вот некоторые из них: 59–58; 47–73; 47–97; 27–37; 00–26.

21. Гадание по определителям

22. 9 знаков

Еще про определители.

Мне рассказывали, что одно время среди первокурсников мехмата была популярна игра в «определитель» на деньги. Двое игроков чертят на бумаге определитель 3 x 3 с незаполненными ячейками. Затем по очереди вставляют в пустые ячейки цифры от 1 до 9. Когда все клетки заполнены, определитель считают - ответ с учетом знака и есть выигрыш (или проигрыш) первого игрока, выраженный в рублях. То есть, если, например, получилось число –23, то первый игрок платит второму 23 рубля, а если, скажем, 34, то, наоборот, второй платит первому 34 рубля.

Хотя правила игры просты, как репка, придумать правильную стратегию выигрыша очень нелегко.

23. Как академики задачу решали

Эту заметку мне прислал математик и писатель А. Жуков, автор замечательной книги «Вездесущее число пи».

Профессор Борис Соломонович Горобец, преподающий математику в двух московских вузах, написал книгу о великом физике Льве Давидовиче Ландау (1908–1968) - «Круг Ландау». Вот какую любопытную историю, связанную с одной физтеховской вступительной задачей он нам рассказал.

Случилось так, что соратник Ландау и его соавтор по десятитомному курсу по теоретической физике академик Евгений Михайлович Лифшиц (1915–1985) в 1959 году помогал выпускнику школы Боре Горобцу готовиться к поступлению в один из ведущих физических вузов Москвы.

На письменном экзамене по математике в Московском физико-математическом институте предлагалась следующая задача: «В основании пирамиды SABC лежит прямоугольный равнобедренный треугольник ABC, с углом C = 90°, стороной AB = l. Боковые грани образуют с плоскостью основания двугранные углы?, ?, ?. Найдите радиус вписанного в пирамиду шара».

Будущий профессор не справился тогда с задачей, но запомнил ее условие и позже сообщил Евгению Михайловичу. Тот, повозившись с задачей в присутствии ученика, не смог решить ее сходу и забрал с собой домой, а вечером позвонил и сообщил, что, не одолев ее в течение часа, предложил эту задачу Льву Давидовичу.

Ландау обожал решать задачи, вызывавшие затруднения у других. Вскоре он перезвонил Лифшицу и, довольный, сказал: «Задачу решил. Решал ровно час. Позвонил Зельдовичу, теперь решает он.» Поясним: Яков Борисович Зельдович (1914–1987) - известный ученый, считавший себя учеником Ландау, был в те годы главным физиком-теоретиком в сверхсекретном Советском Атомном проекте (о чем, конечно, тогда мало кто знал). Примерно через час Е. М. Лифшиц позвонил снова и сообщил: только что ему позвонил Зельдович и не без гордости сказал: «Решил я вашу задачу. За сорок минут решил!»

А за какое время справитесь с этой задачей вы?

24. Задачка

В остроумном сборнике физтеховского юмора «Занаучный юмор» (М., 2000) есть немало математических шуток. Вот только одна из них.

При испытании одного изделия произошел один отказ. Какова вероятность безотказной работы изделия?

Теорема. Все натуральные числа интересны.

Доказательство. Предположим противное. Тогда должно существовать наименьшее неинтересное натуральное число. Ха, так ведь это чертовски интересно!

26. Высшая арифметика

1 + 1 = 3, когда значение 1 достаточно велико.

27. Формула Эйнштейна-Пифагора

E = m c 2 = m(a 2 + b 2).

28. О пользе теорвера

Эту забавную историю из моей студенческой жизни вполне можно предлагать на семинарах по теории вероятностей в качестве задачки.

Летом мы с друзьями отправились в поход в горы. Нас было четверо: Володя, два Олега и я. У нас была палатка и три спальника, из которых один двухместный - для нас с Володей. С этими самыми спальниками, точнее с их расположением в палатке, и вышла закавыка. Дело в том, что шли дожди, палатка была тесной, с боков подтекало, и лежащим с краю было не очень-то удобно. Поэтому я предложил решить эту проблему «по-честному», с помощью жребия.

Смотрите, - сказал я Олегам, - наш с Володей двуспальник может быть либо с краю, либо в центре. Поэтому будем бросать монетку: если выпадет «орел» - наш двуспальник будет с краю, если «решка» - в центре.

Олеги согласились, однако через нескольких ночевок с краю (нетрудно посчитать по формуле полной вероятности, что для каждого из нас с Володей вероятность спать не у края палатки равна 0,75) Олеги заподозрили неладное и предложили пересмотреть договор.

Действительно, - сказал я, - шансы были неравны. На самом деле для нашего двуспальника три возможности: с левого края, с правого и в центре. Поэтому каждый вечер мы будем тянуть одну из трех палочек - если вытянем короткую, то наш двуспальник будет в центре.

Олеги опять согласились, хотя и на этот раз наши шансы ночевать не у края (теперь вероятность равна 0,66, точнее, две третьих) были предпочтительнее, нежели у каждого из них. После двух ночевок с краю (на нашей стороне были лучшие шансы плюс везение) Олеги снова поняли, что их надули. Но тут, к счастью, кончились дожди, и проблема отпала сама собой.

А ведь на самом деле наш двуспальник должен быть всегда с краю, а мы с Володей уже с помощью монетки определяли бы каждый раз, кому повезло. То же бы делали и Олеги. В этом случае шансы спать с краю были бы у всех одинаковы и равны 0,5.

Примечания:

Иногда аналогичную историю рассказывают про Жана Шарля Франсуа Штурма.

Одним из наиболее сложных видов набора является набор математических формул. Формулы представляют собой тексты, включающие шрифты на русской, латинской и греческой основах, прямого и курсивного, светлого, полужирного начертания, с большим числом математических и других знаков, индексов на верхнюю и нижнюю линии шрифта и различных крупнокегельных знаков. Ассортимент шрифтов для набора формул минимально составляет 2 тыс. знаков. Таблица символов в WORD-98 включает 1148 символов.

Основное отличие формульного набора от всех других видов набора состоит в том, что набор формулы в ее классическом виде производится не параллельными строками, а занимает определенную часть площади полосы.

Формула - математическое или химическое выражение, в котором при помощи цифр, символов и специальных знаков в условной форме выражается соотношение между определенными величинами.

Цифры - знаки, которыми обозначаются или выражаются числа (количества). Цифры бывают арабские и римские.

Арабские цифры : 1, 2. 3, 4, 5, 6, 7, 8, 9, 0. Арабские цифры меняют свое значение в зависимости оттого места, которое они занимают в ряду цифровых знаков. Арабские цифры делятся на два класса - 1-й - единицы, десятки, сотни; 2-й - тысячи, десятки тысяч, сотни тысяч и т.д.

Римские цифры . Основных цифровых знаков семь: I - единица, V - пять, X - десять, L - пятьдесят, С - сто, D - пятьсот, М - тысяча. Римские цифры имеют постоянное значение, поэтому числа получаются сложением или вычитанием цифровых знаков. Например: 28 = XXVIII (10 + 10 + 5 + 1 + 1+ 1); 29 = XXIX (10 + 10 -1 + 10); 150 = CL (100 + 50); 200 = СС (100 + 100); 1980 = MDCCCCLXXX (1000 + 500 + 100 + 100 + 100 + 100 + 50 + 10+ 10 + 10); 2002 = MMII (1000 + 1000 + 1 + 1).

Римскими цифрами обычно обозначают столетия (ХV1в.), номера томов (том IX), глав (глава VII), частей (часть II) и т.д.

Символы - буквенные выражения, входящие в состав формулы (например, математические символы: l - длина, λ - частота отказов (усадка), π - отношение длины окружности к диаметру и т.д.; химические символы: Аl - алюминий, РЬ - свинец, Н - водород и т.д.).

Коэффициенты - цифры, стоящие перед символами, например 2Н 2 О; 4sinx. Символы и цифры часто имеют индексы надстрочные (на верхнюю линию) и подстрочные (на нижнюю линию), которые либо поясняют значение индексов, (например, λ с - линейная усадка, G T - теоретическая масса отливки, С ф -фактическая масса отливки); либо указывают на математические действия (например, х 2 , у 3 , z -2 и т.д.); либо указывают число атомов в молекуле и число зарядов ионов в химических формулах (например, СН 4). В формулах встречаются также индексы к индексам: верхний индекс к верхнему индексу - верхний супраиндекс , нижний индекс к верхнему индексу - верхний субиндекс , верхний индекс к нижнему индексу - нижний супраиндекс и нижний индекс к нижнему индексу - нижний субиндекс.



Знаки математических действий и соотношений - сложение « + », вычитания « - », равенства « = », умножения «х»; действие деление обозначается горизонтальной линейкой, которая будет называться дробной или делительной линейкой..

(9.12)

Основная строка - строка, в которой размещены основные знаки математических действий и соотношений.

Классификация формул .

Математические формулы разделяются по сложности набора, зависящей от состава формулы (однострочные, двухстрочные, многострочные) и насыщенности ее различными математическими знаками и символами, индексами, субиндексами, супраиндексами и приставными знаками. По сложности набора все математические формулы условно можно разделить на четыре основные группы и одну дополнительную:

1 группа. Однострочные формулы (9.13-9.16);

2 группа. Двухстрочные формулы (9.17-9.19). Фактически эти ф-лы состоят из 3-х строк;

3 группа. Трехстрочные формулы (9.20-9.23). Фактически эти ф-лы состоят из 5-и строк;

4 группа. Многострочные формулы (9.24-9.26);

Дополнительная группа (9.27-9.29).

При выделении формул в группы сложности учитывалась трудоемкость набора и время, затрачиваемое на набор.

II группа. Двустрочные формулы :

(9.29)

Правила набора текста математических формул .

При наборе математического текста необходимо соблюдать следующие основные правила.

Набирать цифры в формулах прямым шрифтом, например 2ах; Зу .

Сокращенные тригонометрические и математические термины , например sin, cos, tg, ctg, arcsin. Ig, lim и т.д., набирать шрифтом латинского алфавита прямого светлого начертания.

Сокращенные слова в индексе набирать русским шрифтом прямого начертания на нижнюю линию.

Сокращенные наименования физических, метрических и технических единиц измерения , обозначенные буквами русского алфавита, набирать в тексте прямым шрифтом без точек, например 127 В, 20 кВт . Эти же наименования, обозначенные буквами латинского алфавита, набирать также прямым шрифтом без точек, например 120 V, 20 kW , если нет в оригинале других указаний.

Символы (или цифры и символы ), следующие один за другим и не разделенные какими-либо знаками, набирать без отбивки, например 2ху; 4у .

Знаки препинания в формулах набирать прямым светлым шрифтом. Запятые внутри формулы отбивать от последующего элемента формулы на 3 п .; от предыдущего элемента формулы запятая не отбивается; от предшествующей подстрочной литеры запятая отбивается на 1 п .

Многоточие на нижнюю линию набирать точками с разбивкой на полукегельную. От предыдущего и последующего элементов формулы точки отбивать тоже полукегельной, например:

(9.30)

Символы (или цифры и символы), следующие один за другим, не разделять, а набирать без отбивки.

Знаки математических действий и соотношений, а также знаки геометрических образов , как, например, = ,< ,> , + , - , отбивать от предыдущих и последующих элементов формулы на 2 п

Сокращенные математические термины отбивать от предыдущих и последующих элементов формулы на 2 п.

Показатель степени , следующий непосредственно за математическим термином, набирать вплотную к нему, а отбивку делать после показателя степени.

Буквы «d» (в значении «дифференциал» ), δ (в значении «частная производная») и ∆ (в значении «приращение») отбивать от предшествующего элемента формулы на 2 п., от последующего символа указанные знаки не отбиваются.

Сокращенные наименования физических и технических единиц измерения и метрических мер в формулах отбивать на 3 п. от цифр и символов, к которым они относятся.

Знаки ° , " , " отбивать от последующего символа (или цифры) на 2 п., от предыдущего символа указанные знаки не отбиваются.

Знаки препинания, следующие за формулой , не отбиваются от нее.

Строку отточий в формулах набирают точками, используя полукегельную отбивку между ними.

Формулы, набранные в подбор с текстом, отбивать от предыдущего и последующего текстов полукегельной; эта отбивка при выключке строки не уменьшается, а увеличивается. Так же выключают формулы, следующие одна за другой в подбор с текстом.

Несколько формул, помещенных в одной строке, выключенной по центру, отбивать друг от друга пробелом не менее кегельной и не более 1/2 кв.

Мелкие пояснительные формулы, набираемые в одну строку с основной формулой, выключать в правый край строки, или отбивать на две кегельные от основного выражения (если нет иных указаний в оригинале).

Порядковые номера формул набирать цифрами того же кегля, что и однострочные формулы, и выключать в правый край, например:

Х+У=2 (9.31)

Если формула не умещается в формат строки, а переносить ее нельзя, допускается ее набор меньшим кеглем.

Переносы в формулах нежелательны. Во избежание переноса допускается уменьшение пробелов между элементами формулы. Если уменьшением пробелов не удается довести формулу до нужного формата строки, то переносы допускаются:

1) на знаках соотношения между левой и правой частями формулы (= ,>,< );

2) на знаках сложения или вычитания (+, - );

3) на знаках умножения (х). При этом следующая строка начинается со знака, на котором закончилась формула в предыдущей строке. При переносе формул необходимо смотреть за тем, чтобы переносимая часть не была очень маленькой, не разрывались выражения, заключенные в скобки, выражения, относящиеся к знакам корня, интеграла, суммы; не допускается разделение индексов, показателей степеней, дробей.

В нумерованных формулах номер формулы в случае ее переноса ставят на уровне центральной строки перенесенной части формулы. Если порядковая нумерация на умещается в строке, ее помещают в следующей и выключают в правый край. Формулы, числитель или знаменатель которых не умещается в заданном формате набора, набирают шрифтом меньшего кегля, либо шрифтом этого же кегля, но в две строки с переносом.

Если при переносе формулы разрывается делительная линейка или линейка корня, то место разрыва каждой линейки указывают стрелками.

Стрелки нельзя устанавливать около математических знаков.