Теорема сложения вероятностей совместных событий с примерами. Формула полной вероятности. Формула Байеса. Проверить решение упражнений

Теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей двух событий . Вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления :

Р(А+В)=Р(А)+Р(В)-Р(АВ).

Теорема сложения вероятностей двух несовместных событий . Вероятность суммы двух несовместных событий равна сумме вероятностей этих :

Р(А+В)=Р(А)+Р(В).

Пример 2.16. Стрелок стреляет по мишени, разделенной на 3 области. Вероятность попадания в первую область равна 0,45, во вторую - 0,35. Найти вероятность того, что стрелок при одном выстреле попадет либо в первую, либо во вторую область.

Решение.

События А - «стрелок попал в первую область» и В - «стрелок попал во вторую область» - несовместны (попадание в одну область исключает попадание в другую), поэтому теорема сложения применима.

Искомая вероятность равна:

Р(А+В)=Р(А)+Р(В)= 0,45+ 0,35 = 0,8.

Теорема сложения вероятностей п несовместных событий . Вероятность суммы п несовместных событий равна сумме вероятностей этих :

Р(А 1 +А 2 +…+А п)=Р(А 1)+Р(А 2)+…+Р(А п).

Сумма вероятностей противоположных событий равна единице:

Вероятность события В при условии, что произошло событие А , называется условной вероятностью события В и обозначается так: Р(В/А), или Р А (В).

. Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло:

Р(АВ)=Р(А)Р А (В).

Событие В не зависит от события А , если

Р А (В)=Р(В),

т.е. вероятность события В не зависит от того, произошло ли событие А .

Теорема умножения вероятностей двух независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

Р(АВ)=Р(А)Р(В).

Пример 2.17. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 = 0,7; р 2 = 0,8. Найти вероятность попадания при одном залпе (из обоих орудий) хотя бы одним из орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результата стрельбы из другого орудия, поэтому события А – «попадание первого орудия» и В – «попадание второго орудия» независимы.

Вероятность события АВ – «оба орудия дали попадание»:

Искомая вероятность

Р(А+В) = Р(А) + Р(В) – Р(АВ) = 0,7 + 0,8 – 0,56 = 0,94.

Теорема умножения вероятностей п событий. Вероятность произведения п событий равна произведению одного из них на условные вероятности всех остальных, вычисленные в предположении, что все предыдущие события наступили:

Пример 2.18 . В урне 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его обратно. Найти вероятность того, что при первом испытании появится белый шар (событие А), при втором – черный (событие В) и при третьем – синий (событие С).

Решение.

Вероятность появления белого шара в первом испытании:

Вероятность появления черного шара во втором испытании, вычисленная в предположении, что в первом испытании появился белый шар, т. е. условная вероятность:

Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что в первом испытании появился белый шар, а во втором - черный, т. е. условная вероятность:

Искомая вероятность равна:

Теорема умножения вероятностей п независимых событий. Вероятность произведения п независимых событий равна произведению их вероятностей:

Р(А 1 А 2 …А п)=Р(А 1)Р(А 2)…Р(А п).

Вероятность появления хотя бы одного из события. Вероятность появления хотя бы одного из событий А 1 , А 2 , …, А п, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий :

.

Пример 2.19. Вероятности попадания в цель при стрельбе из трех орудий таковы: р 1 = 0,8; р 2 = 0,7; р 3 = 0,9. Найти вероятность хотя бы одного попадания (событие А ) при одном залпе из всех орудий.

Решение.

Вероятность попадания в цель каждым из орудий не зависит от результатов стрельбы из других орудий, поэтому рассматриваемые события A 1 (попадание первого орудия), А 2 (попадание второго орудия) и А 3 (попадание третьего орудия) независимы в совокупности.

Вероятности событий, противоположных событиям А 1 , А 2 и А 3 (т.е. вероятности промахов), соответственно равны:

, , .

Искомая вероятность равна:

Если независимые события А 1 , А 2 , …, А п имеют одинаковую вероятность, равную р , то вероятность появления хотя бы одного из этих событий выражается формулой:

Р(А)= 1 – q n ,

где q=1- p

2.7. Формула полной вероятности. Формула Байеса.

Пусть событие А может произойти при условии появления одного из несовместных событий Н 1 , Н 2 , …, Н п , образующих полную группу событий. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами .

Вероятность появления события А вычисляется по формуле полной вероятности:

Р(А)=Р(Н 1)Р(А/Н 1)+ Р(Н 2)Р(А/Н 2)+…+ Р(Н п)Р(А/Н п).

Допусти, что произведен опыт, в результате которого событие А произошло. Условные вероятности событий Н 1 , Н 2 , …, Н п относительно события А определяются формулами Байеса :

,

Пример 2.20 . В группе из 20 студентов, пришедших на экзамен, 6 подготовлены отлично, 8 – хорошо, 4 – удовлетворительно и 2 – плохо. В экзаменационных билетах имеется 30 вопросов. Отлично подготовленный студент может ответить на все 30 вопросов, хорошо подготовленный – на 24, удовлетворительно – на 15, плохо – на 7.

Вызванный наугад студент ответил на три произвольно заданных вопроса. Найти вероятность того, что этот студент подготовлен: а) отлично; б) плохо.

Решение.

Гипотезы – «студент подготовлен отлично»;

– «студент подготовлен хорошо»;

– «студент подготовлен удовлетворительно»;

– «студент подготовлен плохо».

До опыта:

; ; ; ;

7. Что называют полной группой событий?

8. Какие события называют равновозможными? Приведите примеры таких событий.

9. Что называют элементарным исходом?

10. Какие исходы называю благоприятными данному событию?

11. Какие операции можно проводить над событиями? Дайте им определения. Как обозначаются? Приведите примеры.

12. Что называется вероятностью?

13. Чему равна вероятность достоверного события?

14. Чему равна вероятность невозможного события?

15. В каких пределах заключена вероятность?

16. Как определяется геометрическая вероятность на плоскости?

17. Как определяется вероятность в пространстве?

18. Как определяется вероятность на прямой?

19. Чему равна вероятность суммы двух событий?

20. Чему равна вероятность суммы двух несовместных событий?

21. Чему равна вероятность суммы n несовместных событий?

22. Какую вероятность называют условной? Приведите пример.

23. Сформулируйте теорему умножения вероятностей.

24. Как найти вероятность появления хотя бы одного из событий?

25. Какие события называют гипотезами?

26. Когда применяются формула полной вероятности и формулы Байеса?

При оценки вероятности наступления какого-либо случайного события очень важно предварительно хорошо представлять, зависит ли вероятность () наступления интересующего нас события от того, как развиваются остальные события.

В случае классической схемы, когда все исходы равновероятны, мы уже можем оценить значения вероятности интересующего нас отдельного события самостоятельно. Мы можем сделать это даже в том случае, если событие является сложной совокупностью нескольких элементарных исходов. А если несколько случайных событий происходит одновременно или последовательно? Как это влияет на вероятность реализации интересующего нас события?

Если я несколько раз кидаю игральную кость, и хочу, чтобы выпала "шестерка", а мне все время не везет, значит ли это, что надо увеличивать ставку, потому что, согласно теории вероятностей, мне вот-вот должно повезти? Увы, теория вероятности не утверждает ничего подобного. Ни кости, ни карты, ни монетки не умеют запоминать, что они продемонстрировали нам в прошлый раз. Им совершенно не важно, в первый раз или в десятый раз сегодня я испытываю свою судьбу. Каждый раз, когда я повторяю бросок, я знаю только одно: и на этот раз вероятность выпадения "шестерки" снова равна одной шестой. Конечно, это не значит, что нужная мне цифра не выпадет никогда. Это означает лишь то, что мой проигрыш после первого броска и после любого другого броска - независимые события.

События А и В называются независимыми , если реализация одного из них никак не влияет на вероятность другого события. Например, вероятности поражения цели первым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события "первое орудие поразило цель" и "второе орудие поразило цель" независимы.

Если два события А и В независимы, и вероятность каждого из них известна, то вероятность одновременного наступления и события А, и события В (обозначается АВ) можно посчитать, воспользовавшись следующей теоремой.

Теорема умножения вероятностей для независимых событий

P(AB) = P(A)*P(B) - вероятность одновременного наступления двух независимых событий равна произведению вероятностей этих событий.

Пример. Вероятности попадания в цель при стрельбе первого и второго орудий соответственно равны: р 1 =0,7; р 2 =0,8. Найти вероятность попадания при одном залпе обоими орудиями одновременно.

Решение: как мы уже видели события А (попадание первого орудия) и В (попадание второго орудия) независимы, т.е. Р(АВ)=Р(А)*Р(В)=р 1 *р 2 =0,56.


Что произойдет, с нашими оценками, если исходные события не являются независимыми? Давайте немного изменим предыдущий пример.

Пример. Два стрелка на соревнованиях стреляют по мишеням, причем, если один из них стреляет метко, то соперник начинает нервничать, и его результаты ухудшаются. Как превратить эту житейскую ситуацию в математическую задачу и наметить пути ее решения? Интуитивно понятно, что надо каким-то образом разделить два варианта развития событий, составить по сути дела два сценария, две разные задачи. В первом случае, если соперник промахнулся, сценарий будет благоприятный для нервного спортсмена и его меткость будет выше. Во втором случае, если соперник прилично реализовал свой шанс, вероятность поразить мишень для второго спортсмена снижается.


Для разделения возможных сценариев (их часто называют гипотезами) развития событий мы будем часто использовать схему "дерева вероятностей". Эта схема похожа по смыслу на дерево решений, с которым Вам, наверное, уже приходилось иметь дело. Каждая ветка представляет собой отдельный сценарий развития событий, только теперь она имеет собственное значение так называемой условной вероятности (q 1 , q 2 , q 1 -1, q 2 -1).


Эта схема очень удобна для анализа последовательных случайных событий.

Остается выяснить еще один немаловажный вопрос: откуда берутся исходные значения вероятностей в реальных ситуациях ? Ведь не с одними же монетами и игральными костями работает теория вероятностей? Обычно эти оценки берутся из статистики, а когда статистические сведения отсутствуют, мы проводим собственное исследование. И начинать его нам часто приходится не со сбора данных, а с вопроса, какие сведения нам вообще нужны.

Пример. Допустим, нам надо оценить в городе с населением в сто тысяч жителей объем рынка для нового товара, который не является предметом первой необходимости, например, для бальзама по уходу за окрашенными волосами. Рассмотрим схему "дерева вероятностей". При этом значение вероятности на каждой "ветке" нам надо приблизительно оценить. Итак, наши оценки емкости рынка:

1) из всех жителей города женщин 50%,

2) из всех женщин только 30% красят волосы часто,

3) из них только 10% пользуются бальзамами для окрашенных волос,

4) из них только 10% могут набраться смелости попробовать новый товар,

5) из них 70% обычно покупает все не у нас, а у наших конкурентов.




Решение: По закону перемножения вероятностей, определяем вероятность интересующего нас события А ={житель города покупает у нас этот новый бальзам}=0,00045.

Умножим это значение вероятности на число жителей города. В результате имеем всего 45 потенциальных покупательниц, а если учесть, что одного пузырька этого средства хватает на несколько месяцев, не слишком оживленная получается торговля.

И все-таки польза от наших оценок есть.

Во-первых, мы можем сравнивать прогнозы разных бизнес-идей, на схемах у них будут разные "развилки", и, конечно, значения вероятности тоже будут разные.

Во-вторых, как мы уже говорили, случайная величина не потому называется случайной, что она совсем ни от чего не зависит. Просто ее точное значение заранее не известно. Мы знаем, что среднее количество покупателей может быть увеличено (например, с помощью рекламы нового товара). Так что имеет смысл сосредоточить усилия на тех "развилках", где распределение вероятностей нас особенно не устраивает, на тех факторах, на которые мы в состоянии повлиять.

Рассмотрим еще один количественный пример исследования покупательского поведения.

Пример. За день продовольственный рынок посещает в среднем 10000 человек. Вероятность того, что посетитель рынка заходит в павильон молочных продуктов, равна 1/2. Известно, что в этом павильоне в среднем продается в день 500 кг различных продуктов.

Можно ли утверждать, что средняя покупка в павильоне весит всего 100 г?

Обсуждение. Конечно, нельзя. Понятно, что не каждый, кто заходил в павильон, в результате что-то там купил.




Как показано на схеме, чтобы ответить на вопрос о среднем весе покупки, мы должны найти ответ на вопрос, какова вероятность того, что человек, зашедший в павильон, что-нибудь там купит. Если таких данных в нашем распоряжении не имеется, а нам они нужны, придется их получить самим, понаблюдав некоторое время за посетителями павильона. Допустим, наши наблюдения показали, что только пятая часть посетителей павильона что-то покупает.

Как только эти оценки нами получены, задача становится уже простой. Из 10000 человек, пришедших на рынок, 5000 зайдут в павильон молочных продуктов, покупок будет только 1000. Средний вес покупки равен 500 грамм. Интересно отметить, что для построения полной картины происходящего, логика условных "ветвлений" должна быть определена на каждом этапе нашего рассуждения так же четко, как если бы мы работали с "конкретной" ситуацией, а не с вероятностями.

Задачи для самопроверки

1. Пусть есть электрическая цепь, состоящая из n последовательно соединенных элементов, каждый из которых работает независимо от остальных.




Известна вероятность p невыхода из строя каждого элемента. Определите вероятность исправной работы всего участка цепи (событие А).

2. Студент знает 20 из 25 экзаменационных вопросов. Найдите вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

3. Производство состоит из четырех последовательных этапов, на каждом из которых работает оборудование, для которого вероятности выхода из строя в течение ближайшего месяца равны соответственно р 1 , р 2 , р 3 и р 4 . Найдите вероятность того, что за месяц не случится ни одной остановки производства из-за неисправности оборудования.

Вероятностью события А называют отношение числа m исходов испытаний, благоприятствующих наступлению события А, к общему числу n всех равновозможных несовместных исходов: Р(А)=m/n.

Условной вероятностью события А (или вероятностью события А при условии, что наступило событие В), называется число Р В (А) = Р(АВ)/Р(В), где А и В – два случайных события одного и того же испытания.

Суммой конечного числа событий называется событие, состоящее в наступлении хотя бы одного из них. Сумма двух событий обозначается А+В.

Правила сложения вероятностей :

  • совместных событий А и В:
    Р(А+В) = Р(А)+Р(В)-Р(АВ), где Р(А) – вероятность события А, Р(В) – вероятность события В, Р(А+В) – вероятность появления хотя бы одного из двух событий, Р(АВ)- вероятность совместного появления двух событий.
  • правило сложения вероятностей несовместных событий А и В:
    Р(А+В) = Р(А)+Р(В), где Р(А) – вероятность события А, Р(В) – вероятность события В.

Произведением конечного числа событий называется событие, состоящее в том, что каждое из них произойдет. Произведение двух событий обозначается АВ.

Правила умножения вероятностей :

  • зависимых событий А и В:
    Р(АВ)= Р(А)*Р А (В)= Р(В)*Р В (А), где Р А (В) – условная вероятность наступления события В, если событие А уже наступило, Р В (А) – условная вероятность наступления события А, если событие В уже наступило;
  • правило умножения вероятностей независимых событий А и В:
    Р(АВ) = Р(А)*Р(В), где Р(А) – вероятность события А, Р(В) – вероятность события В.

Примеры решения задач по теме «Операции над событиями. Правила сложения и умножения вероятностей»

Задача 1 . В коробке имеется 250 лампочек, из них 100 по 90Вт, 50 - по 60Вт, 50 - по 25Вт и 50 – по 15Вт. Определить вероятность того, что мощность любой наугад взятой лампочки не превысит 60Вт.

Решение.

А = {мощность лампочки равна 90Вт}, вероятность Р(А)=100/250=0,4;
В = {мощность лампочки равна 60Вт};
С = {мощность лампочки равна 25Вт};
D = {мощность лампочки равна 15Вт}.

2. События А, В, С, D образуют полную систему , так как все они несовместны и одно из них обязательно наступит в данном опыте (выборе лампочки). Вероятность наступления одного из них есть достоверное событие, тогда Р(А)+Р(В)+Р(С)+Р(D)=1.

3. События {мощность лампочки не более 60Вт} (т.е. меньше или равна 60Вт), и {мощность лампочки более 60Вт} (в данном случае – 90Вт) являются противоположными. По свойству противоположных чисел Р(В)+Р(С)+Р(D)=1-Р(А).

4. Учитывая, что Р(В)+Р(С)+Р(D)=Р(В+С+D), получим Р(В+С+D)= 1-Р(А)=1-0,4=0,6.

Задача 2 . Вероятность поражения цели первым стрелком при одном выстреле равна 0,7, а вторым стрелком – 0,9. Найти вероятность того, что
а) цель будет поражена только одним стрелком;
б) цель будет поражена хотя бы одним стрелком.

Решение.
1. Рассматриваем следующие события:
А1 = {первый стрелок поражает цель}, Р(А1)=0,7 из условия задачи;
А̄1 = {первый стрелок промахнулся}, при этом Р(А1)+Р(А̄1) = 1, поскольку А1 и А̄1 – противоположные события. Отсюда Р(А̄1)=1-0,7=0,3;
А2 = {второй стрелок поражает цель}, Р(А2)=0,9 из условия задачи;
А̄2 = {второй стрелок промахнулся}, при этом Р(А̄2)=1-0,9=0,1.

2. Событие А={цель поражена только одним стрелком} означает, что наступило одно из двух несовместных событий: либо А1А̄2, либо А̄1А2.
По правилу сложения вероятностей Р(А)= Р(А1А̄2)+Р(А̄1А2).


Р(А1А̄2)= Р(А1)*Р(А̄2)= 0,7*0,1=0,07;
Р(А̄1А2)= Р(А̄1)*Р(А2)=0,3*0,9=0,27.
Тогда Р(А)= Р(А1А̄2)+Р(А̄1А2)=0,07+0,27=0,34.

3. Событие B={цель поражена хотя бы одним стрелком} означает, что либо цель поразил первый стрелок, либо цель поразил второй стрелок, либо цель поразили оба стрелка.

Событие B̄={цель не поражена ни одним стрелком} является противоположным событию В, а значит Р(В)=1-Р(B̄).
Событие B̄ означает одновременное появление независимых событий Ā1 и Ā2, следовательно Р(B̄)=Р(Ā1Ā2)= Р(Ā1)*Р(Ā2)=0,3*0,1=0,3.
Тогда Р(В)= 1-Р(B̄)=1-0,3=0,7.

Задача 3 . Экзаменационный билет состоит из трех вопросов. Вероятность того, что студент ответит на первый вопрос 0,7; на второй – 0,9; на третий – 0,6. Найти вероятность того, что студент, выбрав билет ответит:
а) на все вопросы;
г) по крайней мере на два вопроса.

Решение. 1. Рассматриваем следующие события:
А1 = {студент ответил на первый вопрос}, Р(А1)=0,7 из условия задачи;
А̄1 = {студент не ответил на первый вопрос}, при этом Р(А1)+Р(А̄1) = 1, поскольку А1 и А̄1 – противоположные события. Отсюда Р(А̄1)=1-0,7=0,3;
А2 = {студент ответил на второй вопрос}, Р(А2)=0,9 из условия задачи;
А̄2 = {студент не ответил на второй вопрос}, при этом Р(А̄2)=1-0,9=0,1;
А3 = {студент ответил на третий вопрос}, Р(А3)=0,6 из условия задачи;
А̄3 = {студент не ответил на третий вопрос}, при этом Р(А̄3)=1-0,6=0,4.

2. Событие А = {студент ответил на все вопросы} означает одновременное появление независимых событий А1, А2 и А3, т.е. Р(А)= Р(А1А2А3).По правилу умножения вероятностей независимых событий: Р(А1А2А3)= Р(А1)*Р(А2)*Р(А3)= 0,7*0,9*0,6=0,378.
Тогда Р(А)= Р(А1А2А3)=0,378.

3. Событие D = {студент ответил по крайней мере на два вопроса} означает, что дан ответ на любые два вопроса или на все три, т.е. наступило одно из четырех несовместных событий: либо A1A2Ā3, либо А1Ā2А3, либо А̄1А2А3, либо А1А2А3.
По правилу сложения вероятностей несовместных событий: Р(D)= Р(A1A2Ā3)+ Р(А1Ā2А3)+Р(А̄1А2А3)+Р(А1А2А3).

По правилу умножения вероятностей независимых событий:
Р(A1A2Ā3)= Р(A1)*Р(A2)*Р(Ā3)= 0,7*0,9*0,4=0,252;
Р(А1Ā2А3)= Р(А1)*Р(Ā2)*Р(А3)= 0,7*0,1*0,6=0,042;
Р(А̄1А2А3)= Р(А̄1)*Р(А2)*Р(А3)= 0,3*0,9*0,6=0,162;
Р(А1А2А3)= Р(А1)*Р(А2)*Р(А3)= 0,7*0,9*0,6=0,378.
Тогда Р(D)= 0,252+0,042+0,162+0,378= 0,834.

Тип занятия: изучение нового материала.
Учебно-воспитательные задачи:
- дать понятие о случайном событии, вероятности события;
- научить вычислять вероятности события; вероятности случайных событий по классическому определению;
- научить применять теоремы сложения и умножения вероятностей для решения задач;
- продолжать формировать интерес к математике посредством решения задач с применением классического определения вероятности для непосредственного подсчета вероятностей явлений;
- прививать интерес к математике, используя исторический материал;
- воспитывать осознанное отношение к процессу обучения, прививать чувство ответственности за качество знаний, осуществлять самоконтроль за процессом решения и оформления упражнений.

Обеспечение занятия:
- карточки-задания для индивидуального опроса;
- карточки-задания для проверочной работы;
- презентация.

Студент должен знать:
- определения и формулы числа перестановок, размещений и сочетаний;
- классическое определение вероятности;
- определения суммы событий, произведения событий; формулировки и формулы теорем сложения и умножения вероятностей.

Студент должен уметь:
- вычислять перестановки, размещения и сочетания;
- вычислять вероятность события используя классическое определение и формулы комбинаторики;
- решать задачи на применение теорем сложения и умножения вероятностей.

Мотивация познавательной деятельности студентов.
Преподаватель сообщает, что возникновение теории вероятностей относится к середине XVII в. и связанно с исследованием Б. Паскаля, П. Ферма и Х.Гюйгенса (1629-1695) . Крупный шаг в развитии теории вероятности связан с работами Я.Бернулли (1654-1705). Ему принадлежит первое доказательство одного из важнейших положений теории вероятностей - законом больших чисел. Следующий этап в развитии теории связан с именами А.Муавра (1667-1754) , К. Гаусса, П. Лапласа (1749-1827) , С.Пуассона (1781-1840). Среди ученых Петербургской школой следует назвать имена А.М. Ляпунова (1857-1918) и А.А Маркова (1856-1922) . После работ этих математиков во всем мире теорию вероятностей стали называть “Русской наукой”. В средине 20-х годов А.Я. Хинчин (1894-1959) и А.Н. Колмогорова создали Московскую школу теории вероятностей. Вклад акад. А.Н.Колмогоров – лауреата Ленинской премии, международной премии им. Б. Больцано, члена ряда зарубежных академиков – в современную математику огромен. Заслуга А.Н.Колмогорова состоит не только в разработке новых научных теорий, но и еще в большей степени в том, что он воспитал целую плеяду талантливых ученых (акад. АН УССР Б.В. Гнеденко, акад. Ю.В. Прохоров, Б.А. Севастьянов и др.).
Теория вероятностей – математическая наука, изучающая закономерности случайных величин,- за последнее десятилетие превратилась в один из основных методов современных науки и техники. Бурное развитие теории автоматического регулирования привело к необходимости решать многочисленные вопросы, связанные с выяснением возможного хода процессов, на которые влияют случайные факторы. Теория вероятностей необходима широкому кругу специалистов – физикам, биологам, врача, экономистам, инженерам, военным, организаторам производства и т.д.

Ход занятия.

I . Организационный момент.

II . Проверка домашнего задания
Провести фронтальный опрос в виде ответов на вопросы:

Проверить решение упражнений:

  • Сколькими способами можно составить список из 10 человек?
  • Сколькими способами из 15 рабочих можно создать бригады по 5 человек в каждой?
  • 30 учащихся обменялись друг с другом фотокарточками. Сколько всего было роздано фотокарточек?

III . Изучение нового материала.
В толковом словаре С.И. Ожегова и Н.Ю. Шведовой читаем: «Вероятность – возможность исполнения, осуществимости чего-нибудь». Мы часто употребляем в повседневной жизни «вероятно», «вероятнее», «невероятно», вовсе не имея в виду конкретные количественные оценки этой возможности исполнения.
Основатель современной теории вероятностей А.Н. Колмогоров писал о вероятности так: «Вероятность математическая – это числовая характеристика степени возможности появления какого-либо определенного события в тех или иных определенных, могущих повторяться неограниченное число раз условиях».
Итак, в математике вероятность измеряется числом. Совсем скоро мы выясним, как именно это можно сделать. Но начнем мы с обсуждения того, у каких событий бывает «математическая вероятность» и что представляют собой эти «определенные, могущие повторяться неограниченное число раз условия». Именно поэтому рассмотрим случайные события и случайные эксперименты.
Нужно сказать, что теория вероятностей, как никакая другая область математики, полна противоречий и парадоксов. Объяснение этому очень простое – она слишком тесно связана с реальной, окружающей нас действительностью. Долгое время ее вместе с математической статистикой даже не хотели причислять к математическим дисциплинам, считая их сугубо прикладными науками.
Только в первой половине прошлого века, в основном благодаря трудам нашего великого соотечественника А.Н. Колмогорова, имя которого уже упоминалось выше, были построены математические основания теории вероятностей, которые позволили отделить собственно науку от ее приложений. Подход, предложенный Колмогоровым, теперь принято называть аксиоматическим, поскольку вероятность в нем (а точнее, вероятностное пространство) определяется как некая математическая структура, удовлетворяющая определенной системе аксиом.
Именно на этом подходе построен современный вузовский курс теории вероятностей, через который прошли в свое время все нынешние учителя математики. Однако в школе такой подход к изучению вероятности (да и математики в целом) вряд ли разумен. Если в вузе основной акцент делается на изучении математического аппарата для исследования вероятностных моделей, то в школе ученик должен научиться эти модели строить, анализировать, проверять их адекватность реальным ситуациям. Такую точку зрения разделяют сегодня большинство ученых, занимающихся проблемами школьного математического образования
В современных школьных учебниках можно найти следующее определение: событие называется случайным , если при одних и тех же условиях оно может как произойти, так и не произойти. Случайным будет, например, событие «При подбрасывании игрального кубика выпадет 6 очков».
В приведенном определении неявно подразумевается одно важное требование, которое необходимо подчеркнуть: мы должны иметь возможность неоднократно воспроизводить одни и те же условия, в которых наблюдается данное событие (например, подбрасывать кубик),- иначе невозможно судить о его случайности.
Стало быть, говоря о любом случайном событии, мы всегда имеем в виду наличие определенных условий, без которых об этом событии вообще не имеет смысла говорить. Этот комплекс условий называют случайным опытом или случайным экспериментом .
В дальнейшем мы будем называть случайным любое событие, связанное со случайным экспериментом . До эксперимента, как правило, невозможно точно сказать, произойдет данное событие, или не произойдет – это выясняется лишь после его завершения. Но неспроста мы сделали оговорку «как правило»: в теории вероятностей принято считать случайными все события, связанные со случайным экспериментом, в том числе:

  • невозможные , которые никогда не могут произойти;
  • достоверные, которые происходят при каждом таком эксперименте.

Например, событие «На игральном кубике выпадет 7 очков» - невозможное, а «На игральном кубике выпадет меньше семи очков» - достоверное. Разумеется, если речь идет о кубике, на гранях которого написаны числа от 1 до 6.
События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными , если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании (В урне два шара – белый и черный, появление черного шара не исключает появление белого при том же испытании). События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны. Вероятность события рассматривается как мера объективной возможности появления случайного события.

Обозначения:
Случайные события (большими буквами латинского алфавита): A,B,C,D,.. (или ). “Случайные” опускают и говорят просто “события”.
Число исходов, благоприятствующих наступлению данного события – m;
Число всех исходов (опытов) – n.
Классическое определение вероятности.
Вероятностью события A называется отношение числа исходов m, благоприятствующих наступлению данного события к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.
вероятность случайного события
Вероятность любого события не может быть меньше нуля и больше единицы, т.е. 0≤P(A)≤1
Невозможному событию соответствует вероятность P(A)=0, а достоверному – вероятность P(A)=1

Теоремы сложения вероятностей.
Теорема сложения вероятностей несовместных событий.
Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

P(A+B)=P(A)+P(B);
P(+ +…+=P(+P+…+P().

Теорема сложения вероятностей совместных событий.
Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

P(A+B)=P(A)+P(B)-P(AB)

Для трех совместных событий имеет место формула:
P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)

Событие, противоположное событию A (т.е. ненаступление события A), обозначают . Сумма вероятностей двух противоположных событий равна единице: P(A)+P()=1

Вероятность наступления события A, вычисленная в предположении, что событие B уже произошло, называется условной вероятностью события A при условии B и обозначается (A) или P(A/B).
Если A и B – независимые события, то
P(B)-(B)=(B).

События A,B,C,… называются независимыми в совокупности, если вероятность каждого из них не меняется в связи с наступлением или ненаступлением других событий по отдельности или в любой их комбинации.

Теоремы умножения вероятностей.
Теорема умножения вероятностей независимых событий.
Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:
P(AB)=P(A) P(B)

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:
P()=P() P()… P().

Теорема умножения вероятностей зависимых событий.
Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:
P(AB)=P(A) (B)=P(B) (A)

IV . Применение знаний при решении типовых задач
Задача 1.
В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?
Решение: Событие A-билет выигрышный. Общее число различных исходов есть n=1000
Число исходов, благоприятствующих получению выигрыша, составляет m=200. Согласно формуле P(A)=, получим P(A)== = 0,2 = 0,147

Задача 4 .
В ящике в случайном порядке разложены 20 деталей, причем 5 из них стандартные. Рабочий берет наудачу 3 детали. Найти вероятность того, что по крайней мере одна из взятых деталей окажется стандартной.

Задача 5.
Найти вероятность того, что наудачу взятое двухзначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно

Задача 6.
В одной урне находятся 4 белых и 8 черных шаров, в другой – 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.
Решение: Пусть A - появление белого шара из первой урны, а B – появление белого шара из второй урны. Очевидно, что события A и B независимы. Найдем P(A)=4/12=1/3, P(B)=3/12=1/4, получим
P(AB)=P(A) P(B)=(1/3) (1/4)=1/12=0,083

Задача 7.
В ящике находится 12 деталей, из которых 8 стандартных. Рабочий берет наудачу одну за другой две детали. Найти вероятность того, что обе детали окажутся стандартными.
Решение: Введем следующие обозначения: A – первая взятая деталь стандартная; B – вторая взятая деталь стандартная. Вероятность того, что первая деталь стандартная, составляет P(A)=8/12=2/3. Вероятность того, что вторая взятая деталь окажется стандартной при условии, что была стандартной первая деталь, т.е. условная вероятность события B, равна (B)=7/11.
Вероятность того, что обе детали окажутся стандартными, находим по теореме умножения вероятностей зависимых событий:
P(AB)=P(A) (B)=(2/3) (7/11)=14/33=0,424

Самостоятельное применение знаний, умений и навыков.
Вариант 1.

  1. Какова вероятность того, что наудачу выбранное целое число от 40 до 70 является кратным 6?
  2. Какова вероятность того, что при пяти бросаниях монеты она три раза упадет гербом к верху?

Вариант 2.

  1. Какова вероятность того, что наудачу выбранное целое число от 1 до 30 (включительно) является делителем числа 30?
  2. В НИИ работает 120 человек, из них 70 знают английский язык, 60 – немецкий, а 50 – знают оба. Какова вероятность того, что выбранный наудачу сотрудник не знает ни одного иностранного языка?

VI . Подведение итогов занятия.

VII . Домашнее задание:
Г.Н. Яковлев, математика, книга 2, § 24.1, 24.2, стр. 365-386. Упражнения 24.11, 24.12, 24.17

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. темы и ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!