Гамма распадом называется испускание ядрами некоторых элементов. Правило смещения при радиоактивном распаде

Радиоактивный распад - процесс, при котором элементарные частицы теряются ядром изотопа, из-за чего изотоп становится более стабильным элементом. Эти субатомные субстанции с огромной скоростью покидают атом. Распадаясь, изотоп испускает радиоактивное гамма- излучение, а также альфа- и бета-частицы. Объяснением данного процесса является то, что большинство ядер нестабильны. Изотопами называют разновидности одного и того же химического элемента с одним и тем же числом протонов, но с разным количеством нейтронов.

Виды радиоактивного альфа- и бета-распад. Далее подробнее о них. Во время альфа-распада выделяется гелий, которые еще называют альфа-частицей, при бета-распаде ядро атома теряет электрон, продвигаясь вперед по периодической таблице на одну позицию, а гамма-излучение - распад ядер с одновременным излучением фотонов, или гамма-лучей. В последнем случае процесс происходит с потерей энергии, но без видоизменения химического элемента.

Реакция радиоактивного распада протекает таким образом, что за определенный отрезок времени из ядра элементов исходит количество нуклонов, пропорциональное тому числу нуклонов, которое все еще остаются в ядре. То есть чем больше их все еще остается в атоме, тем больше их выйдет из него. Скорость распада атома определяет так называемая константа радиоактивности, которая также известна под названием постоянная радиоактивного распада. Однако обычно в физике измеряется не она. Вместо нее используют такую величину, как период полураспада - время, за которое ядро потеряет половину своих нуклонов. Оно зависит от вида вещества и может продолжаться от ничтожных долей секунды до миллиардов лет. Иными словами, некоторые ядра атомов могут существовать вечно, а некоторые - весьма незначительное время до распада.

Тот изотоп, который был исходным в процессе распада, называют материнским, а полученный результат - дочерним изотопом.

Радиоактивные элементы рождаются в подавляющем большинстве случаев в результате цепи из реакций деления атомов. Например: «материнское» (первичное) ядро распадается на несколько «дочерних», те, в свою очередь, также делятся. И эта цепочка не прерывается до тех пор, пока не будут образованы стабильные изотопы. Например: период полураспада урана составляет более четырех с половиной миллиардов лет. За это время в результате этого элемента сначала образуется торий, тот, в свою очередь, становится палладием, и в конце всей этой длинной цепочки будет свинец. Вернее, стабильный его изотоп.

Радиоактивный распад имеет ряд своих особенностей. Нельзя умалчивать и о его «побочных эффектах». Например, если возьмем образец какого-либо радиоактивного изотопа, в результате его распада получим ряд с разной массой ядра. Можно как примеры приводить множество цепочек деления. Радиоактивность - это, по большому счету, естественное явление. Ведь ядерный распад веществ происходил задолго до того, как человек открыл эти механизмы. Однако деятельность этого распада привела к увеличению радиоактивного фона всей планеты. В частности, из-за искусственного ускорения таких естественных процессов.

Радиоактивный распад для человечества оборачивается как новыми возможностями, так и опасностями. Стоит вспомнить хотя бы процесс Он, в частности, приводит к образованию радона-222. Этот газ в большом количестве встречается на планете. Сам по себе он опасности никакой не представляет, но лишь пока ядра его атомов не начинают распадаться на другие элементы. Продукты его деления, особенно в непроветриваемом помещении, вредят человеческому здоровью.

Радиоактивный распад как процесс может и принести пользу. Но лишь если правильно использовать его продукты. Например, радиоактивный фосфор, вводимый при помощи инъекций в организм, помогает получить информацию о состоянии костей пациента. Излучаемые им лучи фиксируются светочувствительной аппаратурой, что позволяет получить точные снимки с зафиксированными местами переломов. Степень его радиоактивности весьма мала и не может причинить какого-либо вреда человеку.

ВИДЫ РАДИОАКТИВНОГО РАСПАДА


Явление радиоактивности сопровождается превращением ядра одного химического элемента в ядро другого химического элемента, а также выделением энергии , которая "уносится" с альфа- бета- и гамма-излучениями.

Все радиоактивные элементы подвержены радиоактивным превращениям.
В некоторых случаях у радиоактивного элемента наблюдается альфа- и бета-излучения одновременно .
Чаще химическому элементу присуще или альфа-излучение, или бета-излучение.
Альфа- или бета- излучения часто сопровождаются гамма- излучением.

Испускание радиоактивных частиц называется радиоактивным распадом.
Различают альфа-распад (с испусканием альфа-частиц), бета-распад (с испусканием бета-частиц), термина "гамма-распад" не существует.
Альфа- и бета-распады – это естественные радиоактивные превращения.

Альфа - распад

Альфа-частицы испускаются только тяжелыми ядрами , т.е. содержащими большое число протонов и нейтронов. Прочность тяжелых ядер мала. Для того, чтобы покинуть ядро, нуклон должен преодолеть ядерные силы, а для этого он должен обладать достаточной энергией.
При объединении двух протонов и двух нейтронов в альфа-частицу ядерные силы в подобном сочетании (между нуклонами частицы) являются наиболее крепкими, а связи с другими нуклонами слабее, поэтому альфа-частица способна "выйти" из ядра. Вылетевшая альфа-частица уносит положительный заряд в 2 единицы и массу в 4 единицы.
В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше.

То ядро, которое распадается, называют материнским, а образовавшееся дочерним.
Дочернее ядро оказывается обычно тоже радиоактивным и через некоторое время распадается.
Процесс радиоактивного распада происходит до тех пор , пока не появится стабильное ядро, чаще всего ядро свинца или висмута.

Бета-распад

Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускают электроны и элементарную частицу очень малой массы - антинейтрино.
Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения.
Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов .

В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом.

Гамма - распад - не существует

В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома.

Гамма излучение зачастую сопровождает явления альфа- или бета-распада.
При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и, когда оно переходит в нормальное состояние, то испускает гамма-кванты (в оптическом или рентгеновском диапазоне волн).

Так как радиоактивное излучение состоит из альфа-частиц, бета-частиц и гамма-квантов (т.е. ядер атома гелия, электронов и гамма-квантов), то явление радиоактивности сопровождается потерей массы и энергии ядра, атома и вещества в целом.
Доказательством того, что радиоактивное излучение несет энергию, является опыт, показывающий, что при поглощении радиоактивного излучения вещество нагревается.

Вспомни тему "Атомная физика" за 9 класс:

Радиоактивность.
Радиоактивные превращения.
Состав атомного ядра. Ядерные силы.
Энергия связи. Дефект масс.
Деление ядер урана.
Ядерная цепная реакция.
Ядерный реактор.
Термоядерная реакция.

Другие страницы по теме "Атомная физика" за 10-11 класс:

О ЗНАМЕНИТЫХ УЧЕНЫХ

Читая лекции в Монреальском университете, профессор Э. Резерфорд останавливался у доски всегда в одних и тех же местах. Сейчас эти места можно определить при помощи счетчика Гейгера!
___

Памятная надпись , сделанная Полем Дираком на стене кабинета теоретической физики Московского государственного университета, гласит: "Физические законы должны обладать математической красотой ".
___

Э. Резерфорд говорил: "Есть три стадии признания научной истины: первая - когда говорят, что это абсурд, вторая - "в этом что-то есть"..." и третья – «это общеизвестно ».
___

Осенью 1913 года в Брюсселе собралась Конференция Сольвея при Международном физическом институте. На ней присутствовало около 30 виднейших ученых, в том числе Эйнштейн, Линдеман, Рубенс, Ланжевен, Резерфорд и многие другие. Единственной женщиной , присутствовавшей на этом конгрессе была Мария Склодовская – Кюри.


Нуклид является стабильным в отношении радиоактивного распада, если его масса меньше суммы масс всех продуктов, образующихся при предполагаемом распаде. Поэтому радиоактивный распад возможен только в том случае, если сумма масс образующихся продуктов будет меньше массы исходного нуклида. Радиоактивный распад в общем виде можно представить следующим образом:

А (материнский нуклид) = В(дочерний нуклид) + Х (испускаемые частицы) + Q(энергия)

Под энергией подразумевают кинетическую энергию испускаемых частиц и g-квантов. Суммарная энергия Q, выделяющаяся при радиоактивном распаде, определяется разностью масс исходного нуклида и продуктов, образующихся после распада в основном состоянии:

Q=dmc 2 =(mA-mB-mX)c 2 .

Во всех случаях радиоактивного распада соблюдаются законы сохранения массы и заряда.

По типу испускаемых частиц различают следующие виды радиоактивного распада:

1) a-распад;

2) b-распад, который подразделяется на b--распад, b+-распад и электронный захват (ЭЗ);

3) эмиссия 7-квантов, электронов конверсии и электронов Оже;

4) спонтанное деление.

Альфа-распад. Альфа-распаду подвержены ядра многих изотопов (тяжёлых) элементов − урана, радия, тория и др. Возможность α-распада связана с тем, что масса (а значит, и энергия покоя) α-радиоактивного ядра больше суммы масс (суммарной энергии покоя) α-частицы и образующего после α-распада дочернего ядра. Избыток энергии исходного (материнского) ядра освобождается в форме кинетической энергии α-частицы и дочернего ядра. Кинетическая энергия α-частиц у большинства α-радиоактивных ядер находится в небольших пределах 4 − 9 Мэв. Периоды полураспада, наоборот, изменяются очень сильно: от 10-7 сек до 2∙1017 лет.

Бета-распад. В процессе β-распада из радиоактивного ядра самопроизвольно испускается электрон (электронный β-распад) или позитрон (позитронный β-распад), которые возникают в самый момент β-распада (их нет в ядре). Третьим видом β-распада является захват ядром электрона из электронной оболочки своего атома (е-захват). Во всех трёх случаях β-распад сопровождается испусканием нейтрино или антинейтрино. В результате β-распада заряд ядра повышается, β+-распада и е-захвата понижается на единицу. Массовое число ядра остаётся неизменным.

Электронный распад испытывают ядра с избытком нейтронов. Этому типу распада подвержены почти все искусственные и некоторые естественные радиоактивные элементы (С12, К40 и др.)

При электронном распаде вновь образующееся дочернее ядро сохраняет массовое число исходного элемента, а положительный заряд нового ядра в результате превращения нейтрона в протон оказывается на одну единицу больше заряда ядра исходного элемента.


Материнский и дочерний радионуклиды при электронном распаде представляют собой изобары, так как сумма протонов и нейтронов не изменяется.

Позитронный распад испытывают ядра с избытком протонов. Этому типу распада подвержены лишь некоторые искусственные радиоактивные изотопы, например 6С11, в ядре которого при 5 нейтронах содержится 6 протонов. У естественных радиоактивных изотопов позитронный распад не наблюдается.

Электронный захват. Радиоактивные изотопы избавляются от избыточных протонов путём электронного захвата, который наблюдается в случае, когда в ядре недостаточно энергии для позитронного распада. Такое ядро обычно захватывает электроны (е-захват) с ближайшего слоя (К-слоя, иногда L-слоя) и «лишний» протон, соединившись с эти электроном, превращается в нейтрон, испуская нейтрино. Следовательно, е-захват представляет собой процесс, прямо противоположный электронному распаду. В данном случае дочерний элемент так же, как и при позитронном распаде, смещается в периодической системе на одну клетку влево от исходного. На освободившееся в К-слое место перескакивает электрон с L-слоя, на место последнего с М-слоя и т.д. каждый перескок связан с высвобождением энергии, которая и высвечивается с квантами рентгеновского излучения.

Гамма-лучи представляют собой поток γ-квантов, т.е. коротковолновых электромагнитных излучений, испускаемых возбуждёнными атомными ядрами.

В процессе γ-излучения ядро самопроизвольно переходит из возбуждённого состояния в менее возбуждённое или основное. При этом избыток энергии освобождается в виде кванта коротковолнового электромагнитного излучения − γ-кванта. γ-кванты лишены заряда и поэтому не отклоняются электрическим или магнитным полем. Они распространяются прямолинейно и равномерно во все стороны от источника.

В большинстве случаев γ-источники испускают γ-кванты различной энергии, т.е. они бывают моноэнергетическими. Нуклиды, находящиеся в возбужденном состоянии, могут распадаться, испуская нейтроны или протоны.

Радионуклиды претерпевают самопроизвольный распад и становятся источниками излучений определенного вида и строго определенной для каждого атома энергии. Различают несколько основных типов радиоактивного распада и соответствующие им виды излучения.

1) Альфа (a)-излучение представляет собой поток ядер атомов гелия (два протона + два нейтрона). Возникает оно в результате альфа-распада, который характерен для радиоактивных изотопов с большим атомным номером. Испускание a-частицы приводит к образованию нового химического элемента, у которого заряд ядра меньше на две единицы и массовое число – меньше на четыре единицы.

2) Бета (b)-излучение представляет собой поток электронов или позитронов. Возникает оно в результате бета-распада ядра атома. Если в ядре есть избыток нейтронов, то один из них распадается с образованием протона, который остается в ядре, электрона, который испускается в виде бета-излучения, а также антинейтрино, не имеющего ни массы, ни заряда, но уносящего из ядра часть энергии. Антинейтрино очень трудно обнаружить, так как оно практически не взаимодействует с веществом.

Позитрон - античастица электрона образуется при распаде ядра с избытком протонов. Такой тип распада встречается гораздо реже, чем b-распад.

3) Гамма (g)-излучение представляет собой поток фотонов или квантов электромагнитного излучения. При наличии в ядре избытка энергии, например, после a- или b-распада, переход ядра из возбужденного состояния в стабильное может происходить путем гамма-изомерного перехода, т.е. с испусканием гамма-квантов. При этом атомный номер элемента и массовое число изотопа остаются прежними, меняется только энергетическое состояние ядра.

Наряду с понятием «ионизирующее излучение» используется термин «радиация». Эти понятия одинаковы по смыслу и являются синонимами.

Энергия излучения, выделяющаяся при радиоактивном распаде ядра атома, несоизмеримо больше энергии обычных химических реакций, которые протекают путем взаимодействия между орбитальными электронами атомов. Единицей измерения энергии ядерных изменений является электрон-вольт (эВ). 1 эВ = 1,6×10-19 Дж.

11) Антиоксиданты. Программа очищения организма от радионуклидов. Конкурентосодержащие продукты питания, препятствующие накоплению 137 Cs и 90 Sr.

Антиоксиданты (антиокислители, консерванты) - ингибиторы окисления, природные или синтетические вещества, способные замедлять окисление.

Наиболее известные антиоксиданты: аскорбиновая кислота (витамин С), токоферол (витамин Е), ß-каротин (провитамин А) и ликопин (в томатах). К ним также относят полифенолы: флавин и флавоноиды (часто встречаются в овощах), танины (в какао, кофе, чае), антоцианы (в красных ягодах).

(от лат. Radio – «излучаю» radius – «луч» и activus – «действенный») – явление спонтанного превращения неустойчивого изотопа химического элемента в другой изотоп (обычно другого элемента) (радиоактивный распад) путем излучения гамма-квантов, элементарных частиц или ядерных фрагментов.
Символ, используемый для обозначения радиоактивных материалов Радиоактивность открыл в 1896 г. Антуан Анри Беккерель. Произошло это случайно. Ученый работал с солями урана и завернул свои образцы вместе с фотопластинки в непрозрачный материал. Фотопластинки оказались зажженными, хотя доступа света к ним не было. Беккерель сделал вывод о невидимом глазу излучение солей урана. Он исследовал это излучение и установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. То есть это свойство присуще не соединениям, а химическому элементу урана.
В 1898 г. Пьер Кюри и Мария Склодовская-Кюри открыли излучения тория, позднее были открыты полоний и радий. в 1903 году супругам Кюри была присуждена Нобелевская премия. На сегодня известно около 40 природных элементов, обладающих радиоактивностью.
Установлено, что все химические элементы с порядковым номером, большим 83 – радиоактивные.
Естественная радиоактивность – спонтанный распад ядер элементов, встречающихся в природе.
Искусственная радиоактивность – спонтанный распад ядер элементов, полученных искусственным путем, через соответствующие ядерные реакции.
Эрнест Резерфорд экспериментально установил (1899), что соли урана излучают 3 типа лучей, которые по-разному отклоняются в магнитном поле:
Спектры?-и?-излучений прерывистые («дискретные»), а спектр?-излучения – непрерывный.
?-распад
Беккерель доказал, что?-лучи представляют собой поток электронов. ?-распад – проявление слабого взаимодействия.
?-распад – внутришньонуклонний процесс, т.е. происходит превращение нейтрона в протон с вылетом электрона и антинейтрино с ядра:

+ ?.

После?-распада атомный номер элемента меняется и он смещается на одну клетку в таблице Менделеева.
?-распад
?-распадом называют самопроизвольный распад атомного ядра на ядро-продукт и?-частицу (ядро атома ).
?-распад является свойством тяжелых ядер с массовым числом А >= 200. Внутри таких ядер за счет свойства насыщения ядерных сил образуются обособления?-частицы, состоящие из двух протонов и двух нейтронов. Образована таким образом?-частица сильнее ощущает кулоновское отталкивание от других протонов ядра, чем отдельные протоны. Одновременно на?-частицу меньше влияет ядерное мижнуклонне притяжения за счет сильного взаимодействия, чем на остальные нуклонов.
Правило смещения Содди для?-распада:

В результате?-распада элемент смещается на 2 клетки к началу таблицы Менделеева. Дочернее ядро, образовавшееся в результате?-распада, обычно также оказывается радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивные ядро, которым чаще всего является ядра свинца или висмута.
?-распад
Гамма лучи это электромагнитные волны с длиной волны, меньше размеры атома. Они образуются обычно при переходе ядра атома из возбужденного состояния в основное состояние. При этом количество нейтронов или протонов в ядре не меняется, а значит ядро остается прежним элементом. Однако излучение гамма-лучей может сопровождать и другие ядерные реакции.
При радиоактивном распаде происходят превращения ядер атомов. Энергии частиц, которые при этом образуются, намного больше энергии, выделяемых в типичных химических реакциях. Поэтому эти процессы практически не зависят от химического окружения атома и от соединений, в которые этот атом входит. Радиоактивный распад происходит спонтанно. Это означает, что невозможно определить момент, когда распадется то или иное ядро. Однако для каждого типа распада является характерное время, за которое распадается половина всех радиоактивных ядер. Это время называется периодом полураспада. Для разных радиоактивных изотопов период полураспада может лежать в очень широких пределах – от наносекунд до миллионов лет. Изотопы с малым периодом полураспада очень радиоактивны, но быстро исчезают. Изотопы с большим периодом полураспада слабо радиоактивные, но эта радиоактивность сохраняется очень долгое время.

Детектирования радиоактивных излучения основано на его действия на вещество, в частности ее ионизации. Исторически впервые радиация была зарегистрирована благодаря почернение облученной фотопластинки. Фотоэмульсии, в которых под действием радиации происходят химические реакции, до сих пор остаются одним из методов детектирования. Другой принцип детектирования используется в счетчиках Гейгера – возникновение несамостоятельного электрического разряда в облученном газе. Дозиметры, которые регистрируют не отдельные акты пролета быстрой заряженной частицы, часто используют изменение свойств, например проводимости, облученного материала
Радиоктивнисть зависит от количества нестабильных изотопов и времени их жизни. Система СИ определяет единицей измерения активности Беккерель – такое количество радиоактивного вещества, в которой за секунду происходит один акт распада. Практически эта величина не очень удобна, поэтому чаще используют внесистемные единицы – Кюри. Иногда употребляется единица Резерфорд.
Относительно воздействия радиоактивного излучения на облученные вещества, то используются те же единицы, что и для рентгеновского излучения. Единицей измерения дозы поглощенного йонизуючи излучения в системе Си является Грей – такая доза, при которой в килограмме вещества выделяется один Джоуль энергии. Единицей биологического действия облучения в системе СИ является Зиверт. Внесистемная единица выделенной при облучении энергии – советов.
Такая единица, как рентген является мерой не выделенной энергии, а ионизации вещества при радиоактивном облучении. Для вимирювавння биологически действия облучения используется биологический эквивалент рентгена – бэр.
Для характеристики интенсивности облучения используют единицы, описывающие скорость набора дозы, например, рентген в час.
Радиоактивное облучение приводит к значительному повреждению ткани. Ионизация химических веществ в биологической ткани создает возможность химических реакций, которые несвойственны для биологических процессов, и к образованию вредных веществ. Повреждения радиацией ДНК вызывает мутации. Работа с радиоактивными веществами требует тщательного соблюдения правил техники безопасности. Радиоактивные вещества помечаются специальным символом, приведенным вверху страницы.
Радиоактивные вещества хранятся в специальных контейнерах, сконструированных таким образом, чтобы поглощать радиоактивное излучение. Большой проблемой является захоронение радиоактивных отходов атомной энергетики.
Радиоактивные вещества можно использовать для получения энергии в условиях, когда другие источники энергии недоступны, например, на космических аппаратах, предназначенных для полетов в отдаленных планет Солнечной системы. Энергия, выделяемая при радиоактивном распаде в таких устройствах может быть преобразована в электрическую с помощью термоэлементов.
В медицине радиоактивное облучение используется при лечении некоторых форм рака, рассчитывая на то, что раковые клетки, которые быстро делятся, чувствительны к облучению, а потому вражатимуться быстрее.
Метод меченых атомов позволяет провести анализ обмена веществ в организме и помогает при диагностике заболеваний.
Датировка за радиоактивными изотопами помогает установить возраст предметов и пород и применяется в геологии, археологии, палеонтологии.
Радиоактивность и радиоактивные вещества также широко используются в различных областях научных исследований.
Все виды радиоактивных излучений, сопровождающих радиоактивность, называют йонизуючи излучениями. Йонизуючи излучения – процесс возбуждения и ионизации атомов вещества при прохождении через них гамма-квантов и частиц, образовавшихся вследствие?-и?-распада. При прохождении, например, гамма-квантов сквозь вещество, кванты превращаются в пар электрон-позитрон при условии, что энергия гамма-кванта превышает энергию этих двух частиц (> 1 МэВ). ?-частицы быстро теряют всю энергию, поскольку возбуждают все атомы, которые встречаются на их пути (1-10 см на воздухе, 0,01-0,2 мм в жидкостях). ?-частицы менее эффективно взаимодействуют с веществами (2-3 м на воздухе, 1-10 мм в жидкостях). ?-кванты обладают наибольшей проникающей способностью. Нейтроны, не имеющие электрического заряда, непосредственно не йонизують атомы. Однако в результате взаимодействия нейтронов с ядрами возникают быстрые заряженные частицы и гамма-кванты, которые являются йонизуючи частицами. При длительному пребыванию человека в зоне радиоактивного излучения происходит ионизацию и возбуждение ее клеток. В результате клетки вступают в новые химические реакции и образуют новые химические вещества, нарушающие нормальное функционирование организма. Мерой действия йонизуючи излучений является поглощенная доза излучения (Грей), равный отношению переданной йонизуючи излучениями энергии к массе вещества (D = E / m). Мощность дозы излучения измеряется отношение поглощенной дозы излучения до времени (Pв = D / t). Радиоактивное излучение используют при рентгенологическом обследовании.

Радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Энциклопедичный YouTube

    1 / 5

    ✪ Виды распада

    ✪ РАДИОАКТИВНОСТЬ физика

    ✪ Урок 467. Закон радиоактивного распада

    ✪ Радиоактивность. Ядерные реакции

    ✪ Ядерные силы Энергия связи частиц в ядре Деление ядер урана Цепная реакция

    Субтитры

    Все, что мы до сих пор обсуждали, изучая химию, основывалось на стабильности электронов, и на том, где они, скорее всего, находятся в устойчивых оболочках. Но если продолжить изучение атома, выяснится, что в атоме находятся и действуют не только электроны. Взаимодействия происходят в самом ядре, ему свойственна нестабильность, которую оно стремится ослабить. Это и станет темой нашего видеоурока. На самом деле, изучение этих механизмов не входит в программу по химии для первокурсников, но лишними эти знания точно не будут. Когда мы будем изучать сильные ядерные взаимодействия, квантовую физику и тому подобное, мы еще подробно рассмотрим, почему протоны, нейтроны и кварки, из которых состоят ядра атомов, взаимодействуют именно таким образом. А сейчас представим, каким образом ядро вообще может распадаться.. Начнем с пучка протонов. Я нарисую несколько. Это протоны, а тут будут нейтроны. Нарисую их каким-нибудь подходящим цветом. Серый цвет – то, что надо. Итак, вот они, мои нейтроны. Сколько у меня протонов? У меня 1, 2, 3, 4, 5, 6, 7, 8. Значит, будет 1, 2, 3, 4, 5, 6, 7, 8, 9 нейтронов. Допустим, это ядро атома. Это, кстати, самый первый ролик об атомном ядре. Вообще, нарисовать атом, на самом деле, очень трудно, ведь у него нет четко определенных границ. Электрон в любой момент времени может находиться где угодно. Но если говорить о месте нахождения электрона 90% времени, то им будет радиус или диаметр атома. Мы уже давно знаем, что ядро - это бесконечно малая часть объема той сферы, где электрон находится 90% времени. А из этого следует что практически все, что мы видим вокруг, это пустое пространство. Все это - пустое пространство. Я говорю об этом, потому что это бесконечно малое пятнышко, даже несмотря на то, что оно является очень малой долей объема атома, его масса составляет почти всю массу атома - это очень важно. Это не атомы, это не электроны. Мы проникаем в ядро. Оказывается, иногда ядро бывает нестабильно и стремится достичь более устойчивой конфигурации. Мы не будем углубляться в детали причин неустойчивости ядра. Но, просто скажу, что иногда оно испускает так, называемые альфа-частицы. Это явление называется альфа-распадом. Запишем. Альфа-распад. Ядро испускает альфа-частицу, звучит фантастично. Это просто совокупность нейтронов и протонов. А альфа-частица – это два нейтрона и два протона. Возможно, они чувствуют, что они здесь не помещаются, вот эти, например. И происходит эмиссия. Они покидают ядро. Рассмотрим, что происходит с атомом, когда случается что-то подобное. Возьмем случайный элемент, назовем его Е. У него есть P - протоны. Нарисую буквы таким же цветом, что и протоны. Итак, вот - протоны. Естественно, у элемента Е есть массовое число атома, равное сумме протонов и нейтронов. Нейтроны серые. Происходит альфа-распад, что же будет с этим элементом? Что же будет с этим элементом? Количество протонов уменьшается на два. Поэтому количество протонов составит р минус 2. И число нейтронов тоже уменьшается на два. Итак, здесь у нас р минус 2, плюс наши нейтроны минус 2, то есть, всего минус 4. Масса уменьшается на четыре, и прежний элемент превращается в новый. Помните, что элементы определяются количеством протонов. При альфа-распаде вы теряете два нейтрона и два протона, но именно протоны превращают этот элемент в другой. Если мы назовем этот элемент 1, что я и собираюсь сделать, то теперь у нас будет новый элемент, элемент 2. Смотрите внимательно. Происходит эмиссия чего-то, что имеет два протона, и два нейтрона. Поэтому его масса будет равна массе двух протонов и двух нейтронов. Что же это? Отделяется что-то, имеющее массу четыре. Что содержит два протона и два нейтрона? Сейчас у меня нет периодической системы элементов. Я забыл ее вырезать и вставить перед съемкой этого видеоролика. Но вы быстро найдете в периодической таблице элемент, имеющий два протона, и этот элемент – гелий. Его атомная масса действительно четыре. Действительно, при альфа-распаде происходит эмиссия именно ядра гелия. Это ядро гелия. Так как это ядро гелия, у него нет электронов, чтобы нейтрализовать заряд протонов, это ион. У него нет электронов. У него только два протона, поэтому он имеет заряд плюс 2. Подпишем заряд. Альфа-частица – это просто ион гелия, ион гелия с зарядом плюс 2, самопроизвольно испускаемый ядром для достижения более устойчивого состояния. Это один вид распада. Теперь другие.. Рисуем еще одно ядро. Нарисую нейтроны. Нарисую протоны. Иногда получается так, что нейтрон чувствует себя неуютно. Он каждый день смотрит на то, что делают протоны, и говорит, знаете, что? Почему-то, когда я прислушиваюсь к себе, я чувствую, что на самом деле должен быть протоном. Если бы я был протоном, все ядро было бы немного устойчивее. И что он делает, чтобы стать протоном? Помните, нейтрон имеет нейтральный заряд? Вот что он делает, он испускает электрон. Это кажется сумасшествием. Электроны в нейтронах и все такое. И я согласен с вами. Это сумасшествие. И однажды мы изучим все, что находится внутри ядра. А пока просто скажем, что нейтрон может испустить электрон. Что он и делает. Итак, вот электрон. Мы принимаем его массу за равную нулю.. На самом деле это не так, но мы говорим сейчас о единицах атомной массы. Если масса протона – один, то масса электрона в 1836 раз меньше. Поэтому мы принимаем его массу за ноль. Хоть это и не так. А его заряд – минус 1. Итак, вернемся к процессу. Нейтрон испускает электрон. Конечно, нейтрон не остается нейтральным, а превращается в протон. Это называется бета-распадом. Запишем этот вид. Бэта-распад. А бета-частица – на самом деле просто испускаемый электрон. Вернемся к нашему элементу. У него есть определенное количество протонов и нейтронов. Вместе они составляют массовое число. Что происходит, когда он подвергается бета-распаду? Изменяется ли количество протонов? Конечно, у нас на один протон больше, чем было, потому что один нейтрон превратился в протон. Количество протонов увеличилось на 1. Изменилось ли массовое число? Посмотрим. Количество нейтронов уменьшилось на один, а количество протонов увеличилось на один. Поэтому массовое число не изменилось. Оно по-прежнему составляет Р плюс N, то есть, масса остается неизменной, в отличие от ситуации с альфа-распадом, но сам элемент изменяется. Количество протонов изменяется. В результате бета-распада мы снова получаем новый элемент. Теперь другая ситуация. Допустим, один из этих протонов смотрит на нейтроны и говорит, знаете, что? Я вижу, как они живут. Мне это очень нравится. Думаю, мне было бы удобнее, а наша группа частиц внутри ядра была бы счастливее, если бы я тоже был нейтроном. Все мы находились бы в более устойчивом состоянии. И что он делает? У этого испытывающего неудобства протона есть возможность испустить позитрон, а не протон. Он испускает позитрон. А что это такое? Это частица, которая имеет точно такую же массу, как и электрон. То есть, его масса в 1836 раз меньше массы протона. Но здесь мы пишем просто ноль, потому что в единицах атомной массы она приближается к нулю. Но позитрон имеет положительный заряд. Немного путает то, что здесь все еще написано е. Когда я вижу е, я думаю, что это электрон. Но нет, эту частицу обозначают буквой е, потому что это частица того же типа, но, вместо отрицательного заряда, она имеет положительный заряд. Это позитрон. Подпишем. Начинает происходить что-то необычное с этими типами частиц и веществом, которые мы рассматриваем. Но это - факт. И если протон испускает эту частицу, то с ней практически уходит его положительный заряд, и этот протон превращается в нейтрон. Это называется эмиссией позитрона. Эмиссию позитрона представить довольно легко, В названии все сказано. Снова элемент Е, с определенным количеством протонов, и нейтронов. Каким должен быть этот новый элемент? Он теряет протон. P минус 1. Он превращается в нейтрон. То есть, количество P уменьшается на один. Количество N увеличивается на один. Поэтому масса целого атома не изменяется. Она составит P плюс N. Но у нас все еще должен получиться другой элемент, правильно? Когда происходит бета-распад, увеличивается количество протонов. Мы переместились вправо в периодической таблице, или увеличили, вы знаете, что я имею в виду. Когда происходит эмиссия позитрона, уменьшается количество протонов. Нужно это записать в обеих этих реакциях. Итак, это эмиссия позитрона, и остается один позитрон. А в нашем бета-распаде остается один электрон. Реакции записаны абсолютно одинаково. Вы знаете, что это электрон, потому что он имеет заряд минус 1. Вы знаете, что это позитрон, потому что он имеет заряд плюс 1. Остается один, последний тип распада, о котором вы должны знать. Но он не изменяет количество протонов или нейтронов в ядре. Он просто высвобождает огромное количество энергии, или, иногда, высокоэнергетический протон. Это явление называется гамма-распадом. Гамма-распад означает, что эти частицы меняют свою конфигурацию. Они немного сближаются. И сближаясь, выделяют энергию в виде электромагнитного излучения с очень маленькой длиной волны. По существу, можно называть это гамма- частицей или гамма-лучом. Это сверхвысокая энергия. Гамма-лучи очень опасны. Они могут вас убить. Все это была теория. Теперь решим пару задач и выясним, с каким типом распада мы имеем дело. Здесь у меня бериллий-7, где семь - это атомная масса. И я превращаю его в литий-7. Итак, что здесь происходит? Масса ядра бериллия остается неизменной, но количество протонов уменьшается с четырех до трех. Уменьшилось количество протонов бериллия. Общая масса не изменилась. Несомненно, это не альфа-распад. Альфа-распад, как вы знаете, это выделение гелия из ядра. Так что же выделяется? Выделяется положительный заряд, или позитрон. Здесь это показано с помощью уравнения. Это позитрон. Поэтому этот тип распада бериллия-7 до лития-7- это эмиссия позитрона. Все ясно. А теперь взглянем на следующий пример. Уран-238, распадающийся до тория-234. И мы видим, что атомная масса уменьшается на 4, и видим, что атомное число уменьшается, количество протонов уменьшается на 2. Вероятно, выделилось что-то, что имеет атомную массу четыре, и атомное число два, то есть, гелий. Значит это альфа-распад. Вот здесь – это альфа-частица. Это пример альфа-распада. Но тут не все так просто. Потому что, если из 92 протонов осталось 90 протонов, здесь осталось еще 92 электрона. Будет ли теперь заряд минус 2? И более того, гелий, который высвобождается, он же не имеет электронов. Это просто ядро гелия. Так будет ли заряд плюс 2? Задавая такой вопрос, вы будете абсолютно правы. Но на самом деле именно в момент распада у тория больше нет причин удерживать эти два электрона, поэтому эти два электрона исчезают, и торий опять становится нейтральным. А гелий очень быстро реагирует таким же образом. Ему очень нужны два электрона для устойчивости, поэтому он очень быстро захватывает два электрона и становится стабильным. Можно записать это любым способом. Рассмотрим еще один пример. Здесь у меня йод. Хорошо. Посмотрим, что происходит. Масса не изменяется. Протоны должны превратиться в нейтроны или нейтроны – превратиться в протоны. Мы видим, тут у меня 53 протона, а здесь - 54. Видимо, один нейтрон превратился в протон. Нейтрон, видимо, превратился в протон. А нейтрон превращается в протон, испуская электрон. И мы наблюдаем это во время этой реакции. Электрон высвободился. Значит, это бета-распад. Это бета-частица. Подписали. Действует та же логика. Подождите, вместо 53 стало 54 протона. Теперь, когда прибавился еще один протон, будет ли у меня положительный заряд? Да, будет. Но очень скоро – возможно, не именно эти электроны, вокруг вращается так много электронов – я захвачу электроны из какого-нибудь места, чтобы стать устойчивым, и снова обрету устойчивость. Но вы будете абсолютно правы, если зададите вопрос, не станет ли частица ионом на малую долю времени? Рассмотрим еще один пример. Радон-222 с атомным числом 86, который превращается в полоний -218, с атомным числом 84. Небольшое интересное отступление. Полоний назван так в честь Польши, потому что Мария Кюри, открывшая его, оттуда, в то время, примерно в конце 1800-х годов – Польша еще не существовала как отдельная страна. Ее территория была разделена между Пруссией, Россией и Австрией. И поляки очень хотели, чтобы люди знали – они – единый народ. Они сделали открытие, что, когда радон подвергается распаду, образуется этот элемент. И назвали его в честь своей родины, Польши. Это привилегия открытия новых элементов. Но вернемся к задаче. Итак, что произошло? Атомная масса уменьшилась на четыре. Атомное число уменьшилось на два. Еще раз повторю, видимо, высвободилась частица гелия. Ядро гелия имеет атомную массу четыре и атомное число два. Все ясно. Значит, это альфа-распад. Можно написать, что это ядро гелия. Оно не имеет электронов. Мы можем даже сразу сказать, что оно будет иметь отрицательный заряд, но затем оно его теряет. Subtitles by the Amara.org community

Теория

Ядро, испытывающее радиоактивный распад, и ядро, возникающее в результате этого распада, называют соответственно материнским и дочерним ядрами. Изменение массового числа и заряда дочернего ядра по отношению к материнскому описывается правилом смещения Содди .

Распад, сопровождающийся испусканием альфа-частиц , назвали альфа-распадом ; распад, сопровождающийся испусканием бета-частиц , был назван бета-распадом (в настоящее время известно, что существуют типы бета-распада без испускания бета-частиц, однако бета-распад всегда сопровождается испусканием нейтрино или антинейтрино). Термин «гамма-распад» применяется редко; испускание ядром гамма-квантов называют обычно изомерным переходом . Гамма-излучение часто сопровождает другие типы распада, когда в результате первого этапа распада возникает дочернее ядро в возбуждённом состоянии, затем испытывающее переход в основное состояние с испусканием гамма-квантов.

Ядра с одинаковым массовым числом A (изобары) могут переходить друг в друга посредством бета-распада. В каждой изобарной цепочке содержится от 1 до 3 бета-стабильных нуклидов (они не могут испытывать бета-распад, однако не обязательно стабильны по отношению к другим видам радиоактивного распада). Остальные ядра изобарной цепочки бета-нестабильны; путём последовательных бета-минус- или бета-плюс-распадов они превращаются в ближайший бета-стабильный нуклид. Ядра, находящиеся в изобарной цепочке между двумя бета-стабильными нуклидами, могут испытывать и β − -, и β + -распад (или электронный захват). Например, существующий в природе радионуклид калий-40 способен распадаться в соседние бета-стабильные ядра аргон-40 и кальций-40:

19 40 K + e − → 18 40 Ar + ν e , {\displaystyle {}_{19}^{40}{\textrm {K}}+e^{-}\rightarrow {}_{18}^{40}{\textrm {Ar}}+\nu _{e},} 19 40 K → 18 40 Ar + e + + ν e , {\displaystyle {}_{19}^{40}{\textrm {K}}\rightarrow {}_{18}^{40}{\textrm {Ar}}+e^{+}+\nu _{e},} 19 40 K → 20 40 Ca + e − + ν ¯ e . {\displaystyle {}_{19}^{40}{\textrm {K}}\rightarrow {}_{20}^{40}{\textrm {Ca}}+e^{-}+{\bar {\nu }}_{e}.}

История открытия

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем . Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей .

Беккерелю пришла в голову мысль: не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана , фосфоресцирующую жёлто-зелёным светом. Осветив её солнечным светом, он завернул соль в чёрную бумагу и положил в тёмном шкафу на фотопластинку, тоже завёрнутую в чёрную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через чёрную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку. Беккерель повторил опыт несколько раз и с одинаковым успехом.

Впоследствии Беккерель испытал и другие соединения и минералы урана (в том числе не проявляющие фосфоресценции), а также металлический уран. Пластинка неизменно засвечивалась. Поместив между солью и пластинкой металлический крестик, Беккерель получил слабые контуры крестика на пластинке. Тогда стало ясно, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу - урану.

Своим открытием Беккерель делится с учёными, с которыми он сотрудничал. В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория , позднее ими были открыты радиоактивные элементы полоний и радий .

Они выяснили, что свойством естественной радиоактивности обладают все соединения урана и в наибольшей степени сам уран. Беккерель же вернулся к интересующим его люминофорам. Правда, он сделал ещё одно крупное открытие, относящееся к радиоактивности. Однажды для публичной лекции Беккерелю понадобилось радиоактивное вещество, он взял его у супругов Кюри и положил пробирку в жилетный карман. Прочтя лекцию, он вернул радиоактивный препарат владельцам, а на следующий день обнаружил на теле под жилетным карманом покраснение кожи в форме пробирки. Беккерель рассказал об этом Пьеру Кюри, и тот поставил на себе опыт: в течение десяти часов носил привязанную к предплечью пробирку с радием. Через несколько дней у него тоже появилось покраснение, перешедшее затем в тяжелейшую язву, от которой он страдал в течение двух месяцев. Так впервые было открыто биологическое действие радиоактивности.

Но и после этого супруги Кюри мужественно делали своё дело. Достаточно сказать, что Мария Кюри умерла от лучевой болезни (дожив, тем не менее, до 66 лет).

В 1955 г. были обследованы записные книжки Марии Кюри. Они до сих пор излучают, благодаря радиоактивному загрязнению, внесённому при их заполнении. На одном из листков сохранился радиоактивный отпечаток пальца Пьера Кюри.

Закон радиоактивного распада

Закон радиоактивного распада - закон, открытый Фредериком Содди и Эрнестом Резерфордом экспериментальным путём и сформулированный в 1903 году . Современная формулировка закона:

d N d t = − λ N , {\displaystyle {\frac {dN}{dt}}=-\lambda N,}

что означает, что число распадов за интервал времени t в произвольном веществе пропорционально числу N имеющихся в образце радиоактивных атомов данного типа.

В этом математическом выражении λ - постоянная распада, которая характеризует вероятность радиоактивного распада за единицу времени и имеет размерность −1 . Знак минус указывает на убывание числа радиоактивных ядер со временем. Закон выражает независимость распада радиоактивных ядер друг от друга и от времени: вероятность распада данного ядра в каждую следующую единицу времени не зависит от времени, прошедшего с начала эксперимента, и от количества ядер, оставшихся в образце.

Этот закон считается основным законом радиоактивности, из него было извлечено несколько важных следствий, среди которых формулировки характеристик распада - среднее время жизни атома и период полураспада .

Константа распада радиоактивного ядра в большинстве случаев практически не зависит от окружающих условий (температуры, давления, химического состава вещества и т. п.). Например, твёрдый тритий T 2 при температуре в несколько кельвинов распадается с той же скоростью, что и газообразный тритий при комнатной температуре или при температуре в тысячи кельвинов; тритий в составе молекулы T 2 распадается с той же скоростью, что и в составе тритированного валина. Слабые изменения константы распада в лабораторных условиях обнаружены лишь для электронного захвата - доступные в лаборатории температуры и давления, а также изменение химического состава способны несколько изменять плотность электронного облака в окружении ядра, что приводит к изменению скорости распада на доли процента. Однако в достаточно жёстких условиях (высокая ионизация атома, высокая плотность электронов, высокий химический потенциал нейтрино, сильные магнитные поля), труднодостижимых в лаборатории, но реализующихся, например, в ядрах звёзд, другие типы распадов тоже могут изменять свою вероятность.

Постоянство константы радиоактивного распада позволяет измерять возраст различных природных и искусственных объектов по распаду входящих в их состав радиоактивных ядер и накоплению продуктов распада. Разработан ряд методов радиоизотопного датирования , позволяющих измерять возраст объектов в диапазоне от единиц до миллиардов лет; среди них наиболее известны радиоуглеродный метод , уран-свинцовый метод , уран-гелиевый метод, калий-аргоновый метод и др.

Виды частиц, испускаемых при радиоактивном распаде

  • лучи первого типа отклоняются так же, как поток положительно заряженных частиц; их назвали α-лучами ;
  • лучи второго типа обычно отклоняются в магнитном поле так же, как поток отрицательно заряженных частиц, их назвали β-лучами (существуют, однако, позитронные бета-лучи, отклоняющиеся в противоположную сторону);
  • лучи третьего типа, которые не отклоняются магнитным полем, назвали γ-излучением .

Хотя в ходе исследований были обнаружены и другие типы частиц, испускающихся при радиоактивном распаде, перечисленные названия сохранились до сих пор, поскольку соответствующие типы распадов наиболее распространены.

При взаимодействии распадающегося ядра с электронной оболочкой возможно испускание частиц (рентгеновских фотонов, Оже-электронов, конверсионных электронов) из электронной оболочки. Первые два типа излучений возникают при появлении в электронной оболочке вакансии (в частности, при электронном захвате и при изомерном переходе с излучением конверсионного электрона) и последующем каскадном заполнении этой вакансии. Конверсионный электрон испускается в процессе изомерного перехода с внутренней конверсией, когда энергия, выделяющаяся при переходе между уровнями ядра, не уносится гамма-квантом, а передаётся одному из электронов оболочки.

Альфа-распад, как правило, происходит в тяжёлых ядрах с массовым числом А ≥ 140 (хотя есть несколько исключений). Внутри тяжёлых ядер за счёт свойства насыщения ядерных сил образуются обособленные α-частицы , состоящие из двух протонов и двух нейтронов. Образовавшаяся α-частица подвержена большему действию кулоновских сил отталкивания от протонов ядра, чем отдельные протоны. Одновременно α-частица испытывает меньшее ядерное притяжение к нуклонам ядра, чем остальные нуклоны. Образовавшаяся альфа-частица на границе ядра отражается от потенциального барьера внутрь, однако с некоторой вероятностью она может преодолеть его (см. Туннельный эффект) и вылететь наружу. С уменьшением энергии альфа-частицы проницаемость потенциального барьера очень быстро (экспоненциально) уменьшается, поэтому время жизни ядер с меньшей доступной энергией альфа-распада при прочих равных условиях больше.

Правило смещения Содди для α-распада:

Z A X → Z − 2 A − 4 Y + 2 4 He . {\displaystyle {}_{Z}^{A}{\textrm {X}}\rightarrow {}_{Z-2}^{A-4}{\textrm {Y}}+{}_{2}^{4}{\textrm {He}}.}

Пример (альфа-распад урана-238 в торий-234):

92 238 U → 90 234 Th + 2 4 He . {\displaystyle {}_{92}^{238}{\textrm {U}}\rightarrow {}_{90}^{234}{\textrm {Th}}+{}_{2}^{4}{\textrm {He}}.}

В результате α-распада атом смещается на 2 клетки к началу таблицы Менделеева (то есть заряд ядра Z уменьшается на 2), массовое число дочернего ядра уменьшается на 4.

Бета-распад

в одном из u -кварков в одном из протонов ядра в d -кварк ; следует отметить, что свободный протон не может распасться в нейтрон, это запрещено законом сохранения энергии, т.к. нейтрон тяжелее протона; однако в ядре такой процесс возможен, если разность масс материнского и дочернего атома положительна). Позитронный распад всегда сопровождается конкурирующим процессом - электронным захватом ; в этом процессе ядро захватывает электрон из атомной оболочки и испускает нейтрино, при этом заряд ядра также уменьшается на единицу. Однако обратное неверно: для многих нуклидов, испытывающих электронный захват (ε-захват), позитронный распад запрещён законом сохранения энергии . В зависимости от того, с какой из электронных оболочек атома (K, L, M,…) захватывается электрон при ε-захвате, процесс обозначается как К-захват, L-захват, M-захват, …; все они, при наличии соответствующих оболочек и достаточности энергии распада, обычно конкурируют, однако наиболее вероятен К-захват, поскольку концентрация электронов K-оболочки вблизи ядра выше, чем более удалённых оболочек. После захвата электрона образовавшаяся вакансия в электронной оболочке заполняется путём перехода электрона из более высокой оболочки, этот процесс может быть каскадным (после перехода вакансия не исчезает, а смещается на более высокую оболочку), а энергия уносится посредством рентгеновских фотонов и/или): 4 7 Be + e − → 3 7 Li + ν e . {\displaystyle {}_{4}^{7}{\textrm {Be}}+e^{-}\rightarrow {}_{3}^{7}{\textrm {Li}}+\nu _{e}.}

После позитронного распада и ε-захвата элемент смещается на 1 клетку к началу таблицы Менделеева (заряд ядра уменьшается на единицу), тогда как массовое число ядра при этом не меняется.

Двойной бета-распад

Наиболее редким из всех известных типов радиоактивного распада является двойной бета-распад , он обнаружен на сегодня лишь для одиннадцати нуклидов, и период полураспада для любого из них превышает 10 19 лет . Двойной бета-распад, в зависимости от нуклида, может происходить:

  • с повышением заряда ядра на 2 (при этом испускаются два электрона и два антинейтрино, 2β − -распад)
  • с понижением заряда ядра на 2, при этом испускаются два нейтрино и
    • два позитрона (двухпозитронный распад, 2β + -распад)
    • испускание одного позитрона сопровождается захватом электрона из оболочки (электрон-позитронная конверсия, или εβ + -распад)
    • захватываются два электрона (двойной электронный захват, 2ε-захват).

Предсказан, но ещё не открыт безнейтринный двойной бета-распад.

, 2 H , 3 H и 3 He). Возбуждённые состояния могут заселяться при ядерных реакциях либо радиоактивном распаде других ядер. Большинство возбуждённых состояний имеют очень малые времена жизни (менее наносекунды). Однако существуют и достаточно долгоживущие состояния (чьё время жизни измеряется микросекундами, сутками или годами), которые называются изомерными, хотя граница между ними и короткоживущими состояниями весьма условна. Изомерные состояния ядер, как правило, распадаются в основное состояние (иногда через несколько промежуточных состояний). При этом излучаются один или несколько гамма-квантов; возбуждение ядра может сниматься также посредством вылета конверсионных электронов из атомной оболочки. Изомерные состояния могут распадаться также и посредством обычных бета- и альфа-распадов.