Первый и третий закон менделя. Законы Менделя. Основы генетики. Современная формулировка законов

Искусственно скрещивая растения гороха с желтыми горошинами с растениями, имеющими зеленые горошины (т. е. проводя моногибридное скрещивание), Мендель убедился, что все семена потомков-гибридов будут желтого цвета. Такое же явление он наблюдал в опыте при скрещивании растений с гладкими и морщинистыми семенами – все гибридные растения имели гладкие семена. Проявляющийся у гибридов признак (желтизну семян или гладкость семян) Мендель назвал доминантным, а подавляемый признак (т. е. зеленый цвет семян или морщинистость семян) – рецессивным. Доминантный признак принято обозначать большой буквой (А, В, С), а рецессивный – маленькой (а, b, с). Совокупность всех внешних и внутренних признаков и свойств организма называют фенотипом, совокупность генов, полученных от родителей, называют генотипом.

На основании этих данных Мендель сформулировал закон единообразия гибридов первого поколения: при скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.

Из семян, полученных в первом поколении, Мендель вырастил растения гороха и снова скрестил их между собой. У растений второго поколения большинство горошин были желтого цвета, но встречались и зеленые горошины. Всего от нескольких скрещиваемых пар растений Мендель получил 6022 желтых и 2001 зеленую горошину. Легко сосчитать, что 3/4 гибридных семян имели желтую окраску и 1/4 зеленую. Явление, при котором скрещивание приводит к образованию потомства частично с доминантными, частично с рецессивными признаками, получило название расщепления.

Опыты с другими признаками подтвердили эти результаты, и Мендель сформулировал закон расщепления: при скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют одну четвертую часть от всего числа потомков второго поколения.

3. Гипотеза чистоты гамет.

Для объяснения тех фактов, которые легли в основу закона единообразия гибридов первого поколения и закона расщепления, Г. Мендель предположил, что «элементов наследственности» (генов) в каждой соматической клетке по два. В клетках гибрида первого поколения, хотя они и имеют только желтые горошины, обязательно должны присутствовать оба «элемента» (и желтого, и зеленого цветов), иначе у гибридов второго поколения не может возникнуть горошин зеленого цвета.

Связь между поколениями обеспечивается через половые клетки – гаметы. Значит, каждая гамета получает только один «элемент наследственности» (ген) из двух возможных – «желтый» или «зеленый». Эту гипотезу Менделя о том, что при образовании гамет в каждую из них попадает только один из двух аллельных генов, называют гипотезой чистоты гамет.



Из опытов Г. Менделя по моногибридному скрещиванию, помимо закона чистоты гамет, следует также, что гены передаются из поколения в поколение не меняясь. Иначе невозможно объяснить тот факт, что в первом поколении после скрещивания гомозигот с желтыми и зелеными горошинами все семена были желтые, а во втором поколении снова появились зеленые горошины. Следовательно, ген «зеленого цвета горошин» не исчез и не превратился в ген «желтого цвета горошин», а просто не проявился в первом поколении, подавленный доминантным геном желтизны. Как же объяснить закономерности генетики с позиций современной науки?

Цитологические основы закономерностей наследования при моногибридном скрещивании. Изобразим моногибридное скрещивание в виде схемы. Символ ♀ обозначает женскую особь, символ ♀ – мужскую, х – скрещивание, Р – родительское поколение, F 1 – первое поколение потомков, F 2 – второе поколение потомков, А – ген, отвечающий за доминантный желтый цвет, а – ген, отвечающий за рецессивный зеленый цвет семян гороха (рис. 50).

Из рисунка видно, что в каждой гамете родительских особей будет по одному гену (вспомните мейоз): в одном случае А, в другом – а. Таким образом, в первом поколении все соматические клетки будут гетерозиготными – Аа. В свою очередь, гибриды первого поколения с равной вероятностью могут образовывать гаметы А или а. Случайные комбинации этих гамет при половом процессе могут дать следующие варианты: АА,Аа, аА, аа. Первые три растения, содержащие ген А, по правилу доминирования будут иметь желтые горошины, а четвертое – рецессивная гомозигота аа – будет иметь зеленые горошины.



Карточка у доски:

1. Что изучает генетика?

2. Какое скрещивание называют моногибридным?

3. Какие гены называют аллельными?

4. Какие организмы называют гомозиготными?

5. Как называется первый закон (правило) Г.Менделя?

6. Как называется второй закон (правило) Г.Менделя?

7. В чем суть закона (гипотезы) чистоты гамет Г.Менделя?

8. Какое количество гомозиготных организмов ожидается при скрещивании гетерозигот?

9. Какое количество различных фенотипов и генотипов ожидается при скрещивании гетерозигот?

10. Приведите пример, доказывающий, что фенотип зависит от взаимодействия генотипа и среды.

Карточки для письменной работы:

1. Определение или сущность термина: 1. Генетика. 2. Наследственность. 3. Изменчивость. 4. Генотип. 5. Фенотип. 6. Моногибридное скрещивание.

2. Определение или сущность термина: 1. Первый закон Менделя. 2. Второй закон Менделя. 3. Гипотеза (закон) чистоты гамет. 4. Аллельные гены. 5. Гомозиготные организмы.

  1. Как Мендель вывел закон расщепления?
  2. В чем сущность гипотезы (закона) чистоты гамет?

Компьютерное тестирование

Тест 1 . Совокупность генов, полученных от родителей:

1. Кариотип.

2. Фенотип.

3. Генотип.

Тест 2. Совокупность внешних и внутренних признаков, полученных от родителей:

1. Кариотип.

2. Фенотип.

3. Генотип.

Тест 3. Первый закон Г.Менделя:

Тест 4. Второй закон Г.Менделя:

1. Закон расщепления признаков в соотношении 3/1.

2. Закон единообразия первого поколения.

3. При образовании гамет в каждую из них попадает только один из двух аллельных генов.

4. Промежуточное наследование при неполном доминировании.

Тест 5 . Закон чистоты гамет:

1. Гаметы чисты, несут только доминантные гены.

2. Гаметы чисты, несут только рецессивные гены.

3. Гаметы чисты, в каждой находятся доминантные и рецессивные гены.

4. При образовании гамет в каждую из них попадает только один из двух аллельных генов.

**Тест 6. Гомозиготные организмы:

1. Образуют один сорт гамет.

2. Образуют два сорта гамет.

4. Не дают расщепления в потомстве.

6. В потомстве дают расщепление по фенотипу 3/1.

Тест 7. Аллельные гены:

1. Гены, отвечающие за развитие альтернативных признаков.

2. Гены, отвечающие за развитие доминантных признаков.

3. Гены, отвечающие за развитие рецессивных признаков.

4. Гены, находящиеся в одном организме.

Тест 8. При скрещивании гетерозигот в потомстве ожидается гомозиготных особей:

1. Одна вторая.

2. Одна третья.

3. Одна четвертая.

4. Три четвертых.

Тест 9. При скрещивании гетерозигот в потомстве ожидается особей с доминантными признаками:

1. Одна вторая.

2. Одна третья.

3. Одна четвертая.

4. Три четвертых.

**Тест 10. Верные суждения:

1. Фенотип зависит только от генотипа.

2. Фенотип зависит от взаимодействия генотипа и среды.

3. Гаметы несут только один наследственный признак из пары.

4. Генотип гороха с желтыми семенами может быть только АА .

17.06.2010

Законы Г. Менделя описывают характер наследования отдельных признаков на протяжении нескольких поколений.

Первый закон Менделя, или Правило единообразия

Закон выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:

  • форма семени (круглая/некруглая);
  • окраска семени (желтая/зеленая)
  • кожура семени (гладкая/морщинистая) и т.д.

При скрещивании растений с гладкими и морщинистыми семенами все гибриды первого поколения оказались гладкими. Этот признак был назван доминантным .

При скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам единообразными и похожими на родителя с доминантным признаком.

В случае неполного доминирования во втором поколении только 25% особей фенотипически похожи на родителя с доминантным признаком. Гетерозиготы будут от них фенотипически отличаться. Например, от красноцветковых и бело-цветковых растений львиного зева в потомстве 25% особей красные, 25% - белые, а 50% - розовые. Анализирующее скрещивание используют для выявления гетерозиготности особи по определенному аллелю. Для этого особь с доминантным признаком (АА? или Аа?) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1:1:

Второй закон Менделя, или Закон расщепления

При скрещивании гетерозиготных гибридов первого поколения между собой во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3:1 по фенотипу и 1:2:1 по генотипу.

Рис. 19. Цитологические основы мипогибридного расщепления

Появляются семена как с гладкой, так и с морщинистой кожурой.

Третий закон Менделя, или Закон независимого наследования при дигибридном (полигибридном) скрещивании

Данный закон выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по парам альтернативных признаков. Например, растение, дающее желтые гладкие семена, скрещивают с растением, дающим зеленые морщинистые семена.

Гаметы АВ Аb аВ ab
АВ ААВВ ААВb АаВВ АаВb
Ab ААВb ААbb АаВb Ааbb
аВ АаВВ АаВb ааВВ ааВb
аb АаВb Аabb ааВb ааbb

Во втором поколении возможно появление четырех фенотипов в отношении 9:3:3:1 и девяти генотипов.

В результате проведенного анализа выяснили, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:

  • для диплоидных организмов;
  • для генов, расположенных в разных гомологичных хромосомах;
  • при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.

Указанные условия и являются цитологическими основами дигибридного скрещивания.

Те же закономерности распространяются на полигибридные скрещивания.

В экспериментах Менделя установлена дискретность (прерывистость) наследственного материала, что позже привело к открытию генов как элементарных материальных носителей наследственной информации.

Гипотеза чистоты гамет утверждает, что в гамете, в норме, всегда находится только одна из гомологичных хромосом данной пары. Расщепление - это результат случайного сочетания гамет, несущих разные аллели.

Так как события случайны, то закономерность носит статистический характер, т.е. определяется большим числом равновероятных событий - встреч гамет, несущих разные (или одинаковые) альтернативные гены.

В этой статье кратко и понятно описываются три закона Менделя. Эти законы - основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип - это совокупность генов организма, а фенотип - его внешних признаков.

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель - известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя - закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого - белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя - AA (пурпурные), а второго - aa (белые). От первого родителя будет унаследован ген A, а от второго - a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной - рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены - гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками - это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой - за белые, то половина лепестков камелии станут красными, а остальные - белыми.

Такое явление называют кодоминированием.

Неполное доминирование - похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя - закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA - пурпурные цветки (25%);
  • aa - белые цветки (25%);
  • Aa - пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета - доминантный, а зелёного - рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета - это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете - а их две - находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт - закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели - гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя - закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость - B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали - другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя - основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел - генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика - это один из самых интересных и перспективных разделов биологии.

Введение.

Генетика – наука, изучающая закономерности наследственности и изменчивости живых организмов.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков

Чарльз Дарвин определял наследственность как свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение, а изменчивость как свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

Наследование признаков осуществляется через размножение. При половом размножении новые поколения возникают в результате оплодотворения. Материальные основы наследственности заключены в половых клетках. При бесполом или вегетативном размножении новое поколение развивается или из одноклеточных спор, или из многоклеточных образований. И при этих формах размножения связь между поколениями осуществляется через клетки, в которых заключены материальные основы наследственности (элементарные единицы наследственности) – гены – представляют собой участки ДНК хромосом.

Совокупность генов, которую организм получает от родителей, составляет его генотип. Совокупность внешних и внутренних признаков – это фенотип. Фенотип развивается в результате взаимодействия генотипа и условий внешней среды. Так или иначе основой остаются признаки которые несут в себе гены.

Закономерности, по которым признаки передаются из поколения в поколение, первым открыл великий чешский ученый Грегор Мендель. Он открыл и сформулировал три закона наследования, которые легли в основу современной генетики.

Жизнь и научные исследования Грегора Иоганна Менделя.

Моравский монах и генетик растений. Иоганн Мендель родился 1822 году в местечке Хейнцендорф (ныне Гинчице в Чехии), где его отец владел небольшим крестьянским наделом. Грегор Мендель, по свидетельству знавших его, действительно был добрым и приятным человеком. После получения начального образования в местной деревенской школе и позже, по окончании коллегии пиаристов в Лейпнике он был в 1834 году принял в Троппаунскую императорско-королевскую гимназию в первый грамматический класс. Четырьмя годами спустя родители Иоганна в результате стечения многих, быстро следовавших друг за другом, несчастливых событий были полностью лишены возможности возмещать необходимые расходы, связанные с учебой, а их сын, будучи тогда лишь 16 лет от роду, вынужден был совершенно самостоятельно заботиться о собственном содержании. В 1843 году Мендель был принят в Августинский монастырь святого Томаша в Альтбрюнне, где и принял имя Грегор. В 1846 году Мендель слушал также лекции по хозяйствованию, садоводству и виноградарству в Философском институте в Брюнне. В 1848 году, завершив курс богословия, с глубоким почтением Мендель получил разрешение готовиться к экзаменам на степень доктора философии. Когда же в следующем году он укрепился в намерении экзаменоваться, то ему было вручено предписание занять место супплента императорско-королевской гимназии в Цнайме, чему он последовал с радостью.

В 1851 году настоятель монастыря направил Менделя учиться в венский университет, где он, среди прочего, изучал ботанику. После окончания университета Мендель преподавал естественные науки в местной школе. Благодаря этому шагу его материальное положение в корне изменилось. В столь необходимом для каждых занятий благотворном благополучии физического существования к нему, с глубоким почтением, вернулись и мужество и силы, и он в течение пробного года штудировал предписанные классические предметы с большим прилежанием и любовью. В свободные часы занимался он маленьким ботанико-минералогическим собранием, предоставленным в монастыре в его распоряжение. Его пристрастие к области естествознания становилось тем большим, чем большие возможности получал он отдаваться ему. Хотя упомянутый в этих занятиях был лишен какого-либо руководства, а путь автодидакта здесь, как ни в какой иной науке, труден и ведет к цели медленно, все же за оное время Мендель приобрел такую любовь к изучению природы, что он не жалел уже сил для заполнения изменившихся у него пробелов путем самообучения и следуя советам людей, обладавших практическим опытом. 3 апреля 1851 года «учительский корпус» училища принял решение пригласить для временного замещения профессорской должности каноника монастыря святого Томаша господина Грегора Менделя. Помологические успехи Грегора Менделя дали ему право на звездный титул и на временное исполнение должности супплента по естественной истории в приготовительном классе Технического училища. В первом семестре учебы он занимался только десять часов в неделю и только у Доплера. Во втором семестре он занимался в неделю уже по двадцать часов. Из них десять – физикой у Доплера, пять в неделю – зоологией у Рудольфа Кнера. Одиннадцать часов в неделю – ботаникой у профессора Фенцля: кроме лекций по морфологии и систематике, он проходил еще специальный практикум по описанию и определению растений. В третьем семестре он записался уже на тридцать два часа занятий в неделю: десять часов – физика у Доплера, десять – химия у Роттенбахера: всеобщая химия, медицинская химия, фармакологическая химия и практикум по аналитической химии. Пять – на зоологию у Кнера. Шесть часов занятий у Унгера, одного из первых цитологов в мире. В его лабораториях он изучал анатомию и физиологию растений и проходил практикум по технике микроскопии. И еще - раз в неделю на кафедре математики – практикум по логарифмированию и тригонометрии.

1850 год, жизнь складывалась неплохо. Мендель уже мог сам себя содержать, и пользовался у коллег большим уважением, ибо хорошо справляться со своими обязанностями, и был очень приятен в общении. Его любили ученики.

В 1851 году Грегор Мендель замахнулся на кардинальный вопрос биологии – на проблему изменчивости и наследственности. Именно тогда он начал проводить опыты по направленному культивированию растений. Мендель доставлял различные растения из дальних и ближних окрестностей Брюнна. Культивировал растения по группам в специально отведенной для каждой из них части монастырского сада при различных внешних условиях. Он занимался кропотливыми метеонаблюдениями. Больше всего экспериментов и наблюдений Грегор проводил с горохом, который, начиная с 1854-го, из года в год каждую весну высевал в маленьком садике под окнами прелатуры. На горохе оказалось не сложно ставить четкий гибридизационный опыт. Для этого нужно лишь вскрыть пинцетом крупный, хоть еще и не дозревший цветок, оборвать пыльники, и самостоятельно предопределять ему «пару» для скрещивания. Поскольку самоопыление исключено, сорта гороха представляют собою, как правило, «чистые линии» с неизменяющимися от поколения к поколению константными признаками, которые очерчены крайне четко. Мендель выделил признаки, определявшие межсортовые различия: окраску кожуры зрелых зерен и – отдельно – зерен незрелых, форму зрелых горошин, цвет «белка» (эндоспермы), длину оси стебля, расположение и окраску бутонов. Тридцать с лишним сортов использовал он в эксперименте, и каждый из сортов предварительно был подвергнут двухлетнему испытанию на «константность» , на «постоянство признаков» , на «чистоту кровей» – в 1854-м и в 1855-м. Восемь лет шли эксперименты с горохом. Сотни раз за восемь цветений своими руками он аккуратно обрывал пыльники и, набрав на пинцет пыльцу с тычинок цветка другого сорта, наносил ее на рыльце пестика. На десять тысяч растений, полученных в итоге скрещиваний и от самоопылившихся гибридов, было заведено десять тысяч паспортов. Записи в них аккуратны: когда родительское растение выращено, какие цветы у него были, чьей пыльцой произведено оплодотворение, какие горошины – желтые или зеленые, гладкие или морщинистые – получены, какие цветы – окраска по краям, окраска в центре – распустились, когда получены семена, сколько из них желтых, сколько зеленых, круглых, морщинистых, сколько из них отобрано для посадки, когда они высажены и так далее.

Результатом его исследований стал доклад «Опыты над растительными гибридами», который был прочитан брюннским естествоиспытателем в 1865-м. В докладе сказано: «Поводом для постановки опытов, которым посвящена настоящая статья, послужило искусственное скрещивание декоративных растений, производившееся с целью получения новых, различающихся по окраске форм. Для постановки дальнейших опытов с целью проследить развитие помесей в их потомстве дала толчок бросающаяся в глаза закономерность, с которой гибридные формы постоянно возвращались к своим родоначальным формам». Как это нередко случается в истории науки, работа Менделя, не сразу получила должное признание у современников. Итоги его опытов были обнародованы на заседании Общества естественных наук города Брюнна, а затем опубликованы в журнале этого Общества, но идеи Менделя в то время не нашли поддержки. Номер журнала с описанием революционной работы Менделя в течение тридцати лет пылился в библиотеках. Лишь в конце XIX века ученые, занимавшиеся проблемами наследственности, открыли для себя труды Менделя, и он смог получить (уже посмертно) заслуженное признание.