Спирты содержащие в молекуле. Спирты: их номенклатура, физические и химические свойства. Спирты в косметике и парфюмерии

1. Классификация гидроксилпроизводных углеводородов.

2. Предельные одноатомные спирты (алканолы).

3. Многоатомные спирты.

4. Фенолы.

5. Простые эфиры.

Гидроксилпроизводными углеводородов называются соединения, которые образуются в результате замещения в молекуле углеводорода одного или нескольких атомов водорода на гидроксильные группы.

Гидроксилпроизводные углеводородов со связью С(sр 3)-ОН называются спиртами. Это предельные алифатические и циклические спирты, например СН 3 ОН и,

непредельные спирты, например СН 2 =СН-СН 2 -ОН, ароматические спирты -

Гидроксилпроизводные, содержащие связь С(sр 2)-ОН, называются енолами R-СН=СН-ОН и фенолами

По числу гидроксильных групп, содержащихся в молекуле, спирты и фенолы могут быть одно (одна ОН-группа)-, двух (две ОН-группы)-, трех- и многоатомными.

Нахождение в природе. В отличие от галогенопроизводных углеводородов спирты и фенолы, их производные широко представлены в растительном и животном мире.

Высшие спирты встречаются в свободном виде (например, цетиловый спирт С 16 Н 33 ОН), в составе сложных эфиров с высшими жирными кислотами (спермацет, воски). Непредельные спирты являются составной частью эфирных масел. Природными циклическими спиртами являются ментол и холестерин. Глицерин входит в состав природных растительных и животных жиров и масел.

Фенолы и их простые эфиры входят в состав эфирных масел многих душистых растений, например чабреца, тимьяна, тмина, аниса, эстрагона, укропа и т.д. Многоатомные фенолы и их производные - душистые вещества растений (например гвоздики, мускатного ореха), составная часть гликозидов растений, дубильных веществ чая, кофе и т.д.

1. Предельные одноатомные спирты (алканолы).

Общая формула С n Н 2 n +1 ОН.

Номенклатура. По заместительной номенклатуре гидроксильная группа в названии спиртов обозначается суффиксом -ол. По радикально-функциональной номенклатуре в названии указывают радикал и добавляют -овый спирт: С 2 Н 5 ОН - этанол или этил овый спирт,

СН 3 -СН 2 -СН 2 -ОН - пропанол-1 или пропил овый спирт.

Получение:

а) гидролиз галогеналканов. Галогеналканы в реакциях с водой или водным раствором щелочи легко образуют спирты (см. «Галогенпроизводные углеводородов»):

С 2 Н 5 Вr + NаОН(водный раствор) → С 2 Н 5 ОН + NаВr.

б) гидратация алкенов. Присоединение воды к алкенам происходит в присутствии катализатора (см. «Алкены»):

СН 2 =СН 2 + Н-ОН СН 3 -СН 2 -ОН.

в) гидрирование карбонильных соединений.

Каталитическое гидрирование альдегидов и кетонов приводит к образованию спиртов (см. «Альдегиды и кетоны»):

СН 3 -СН=О + Н 2 → СН 3 -СН 2 -ОН

Катализаторы: Ni, Pt, Pd.

г) реакции магнийорганических соединений. Легко происходит присоединение магнийорганических соединений к альдегидам и кетонам (см.«Альдегиды и кетоны»):

Из метаналя образуется первичный спирт, из альдегидов - вторичные спирты, кетонов - третичные спирты.

Особенность реакций этого типа - продукты реакции - спирты содержат больше атомов углерода по сравнению с исходными карбонильными соединениями.

д) гидрирование оксида углерода (II). В зависимости от природы катализатора и условий реакции получают метанол или смесь различных спиртов (синтол): СО + 2Н 2 → СН 3 -ОН.

Катализаторы: ZnO, Co и другие.

е) спиртовое брожение углеводов. Глюкоза в присутствии дрожжей подвергается брожению с образованием этилового спирта и углекислого газа: С 6 Н 12 О 6 → 2СН 3 -СН 2 -ОН + 2СО 2

Изомерия. Для предельных спиртов характерна структурная изомерия: изомерия углеродной цепи, расположения гидроксильной группы в цепи. По положению гидроксильной группы в цепи различают первичные (R-СН 2 -ОН), вторичные (R 2 СН-ОН) и третичные (R 3 С-ОН) спирты.

Для спиртов характерна межклассовая изомерия (метамерия), спиртам изомерны простые эфиры с общей формулой R-O-R.

СН 3 -СН 2 -СН ОН-СН 3 (см. «Оптическая изомерия»).

Строение. В спиртах атомы углерода и кислорода находятся вsр 3 - гибридизации. Спирты содержат две полярные σ-связи: С-О (sр 3 -sр 3 -перекрывание) и О-Н (sр 3 -s -перекрывание). Диполи этих связей направлены в сторону атома кислорода, причем дипольный момент связи О-Н выше, чем связи С-О. Алканолы являются полярными соединениями:

Ассоциация молекул спиртов осуществляется за счет образования межмолекулярных водородных связей:

в результате спирты, по сравнению с углеводородами и галогенпроизводными углеводородов, имеют более высокие температуры кипения и плавления. Образование водородных связей между молекулами спиртов и воды способствует растворению этих соединений в воде.

Химические свойства.

Химические свойства спиртов обусловлены наличием в молекуле полярных связей С-О и О-Н и неподеленных электронных пар на атоме кислорода.

а) кислотные свойства

Спирты являются слабыми О-Н-кислотами. Ряд кислотности: RСООН > НОН > RОН.

В водном растворе кислотность самих спиртов уменьшается в следующем направлении: метанол > первичные > вторичные > третичные.

Кислотные свойства спиртов проявляются в образовании солей (алкоголятов или алкоксидов) при взаимодействии с металлами:

2С 2 Н 5 ОН + 2Nа → 2 С 2 Н 5 О - Nа + + Н 2

этанол этилат(этоксид) натрия

В водных растворах соли гидролизуются с образованием спиртов и щелочей:

С 2 Н 5 О - Nа + + НОН → С 2 Н 5 ОН + NаОН

б) основные и нуклеофильные свойства

Основные и нуклеофильные свойства спиртов обусловлены неподеленной электронной парой на атоме кислорода.

Основные свойства увеличиваются в следующем направлении

метанол < первичные < вторичные < третичные спирты и проявляются в образовании оксониевых солей: С 2 Н 5 ОН + Н + → С 2 Н 5 ОН 2 + . Образование оксониевых солей играет важную роль в реакциях нуклеофильного замещения и отщепления.

Таким образом, спирты являются амфотерными соединениями.

Слабые нуклеофильные свойства спиртов и алкоголятов проявляются в реакциях

Алкилирования - взаимодействия со спиртами и алкоголятами с образованием простых эфиров (реакция Вильямсона, протекает при нагревании): СН 3 B r + С 2 Н 5 О Nа → С 2 Н 5 ОСН 3 + NаBr

метилбромид этилат натрия метоксиэтан,

Ацилирования - взаимодействия с карбоновыми кислотами и их производными с образование сложных эфиров (реакция этерификации, протекает в присутствии катализатора):

СН 3 СООН + С 2 Н 5 О Н ↔ СН 3 СООС 2 Н 5 + НОН

уксусная кислота этанол этилацетат,

С карбонильными соединениями - образование полуацеталей и ацеталей:

этаналь метанол 1-метоксиэтанол 1,2-диметоксиэтанол.

Алкоголяты по сравнению со спиртами являются более сильными основаниями и нуклеофилами.

в) реакции замещения гидроксильной группы (нуклеофильное замещение - S N )

Часто в этих реакциях ОН-группу модифицируют с помощью минеральных кислот или кислот Льюиса (образование оксониевых солей RОН 2 +). Модифицированная гидроксильная группа легко замещается на атом галогена, амино- и алкоксигруппу и другие группы. Реакционная активность спиртов в этих реакциях увеличивается в следующем направлении: первичные < вторичные < третичные.

Примеры реакций. Замещение гидроксильной группы на атом галогена:

R-ОН + SOCl 2 → R-Cl + НCl + SО 2

R-ОН + РН al 5 → R-Нal + Н-Нal + РОНal 3

R-ОН + Н-Н al → R-Нal + НОН

Реакционная активность галогеноводородов увеличивается в направлении НСl < НBr <НJ. Однако иодоводород практически не используют в реакциях этого типа, поскольку он легко восстанавливает спирты до углеводородов.

Замещение гидроксильной группы на амино- и алкоксигруппу:

R-ОН + Н- N Н 2 →R- NН 2 + НОН

R-ОН + RО- Н→ R-О-R + НОН.

Взаимодействие с минеральными кислотами с образованием сложных эфиров:

R-ОН + НN О 2 →R-ОNО 2 + НОН

алкилнитрат

R-ОН + НS О 3 →R-ОSО 3 + НОН

алкилсульфат

Реакции нуклеофильного замещения протекают по мономолекулярному (S N 1) или бимолекулярному (S N 2) механизму.

г) реакции отщепления гидроксильной группы (Е-типа, дегидратация спиртов)

Отщепление воды происходит при нагревании в присутствии катализатора - серной или фосфорной кислот, оксида цинка или алюминия. Дегидратация спиртов с образованием алкенов протекает в соответствии с правилом Зайцева: гидроксильная группа отщепляется от α-углеродного атома, водород - от менее гидрированного β-атома углерода спирта:

1-бутанол 2-бутен

Реакционная активность спиртов увеличивается в следующем направлении: первичные < вторичные < третичные.

Реакции отщепления протекают по мономолекулярному (Е1) или бимолекулярному (Е2) механизму.

д) окисление спиртов

В реакциях окисления более активны первичные спирты, третичные спирты в аналогичных условиях не окисляются. Окислители: перманганат калия или бихромат калия в кислой среде. Первичные спирты окисляются с образованием альдегидов и далее - карбоновых кислот, вторичные спирты - кетонов:

R-ОН + [ О ] → R-СН=О → R-СООН

R 2 СН-ОН + [ О ] → R 2 С=О

Первичные и вторичные спирты могут быть превращены в карбонильные соединения при дегидрировании. Реакции протекают при 400-500 0 С в присутствии катализатора - Cu/Аg:

Спирты - сложные органические соединения, углеводороды, обязательно содержащие один или несколько гидроксилов (групп ОН-), связанных с углеводородным радикалом.

История открытия

По мнению историков, уже за 8 веков до нашей эры человек употреблял напитки, содержащие этиловый спирт. Их получали методом сбраживания фруктов или меда. В чистом виде этанол был выделен из вина арабами примерно в VI-VII веках, а европейцами - на пять столетий позже. В XVII веке перегонкой древесины был получен метанол, а в XIX веке химики установили, что спирты - это целая категория органических веществ.

Классификация

По количеству гидроксилов спирты делят на одно-, двух-, трех-, многоатомные. Например, одноатомный этанол; трехатомный глицерин.
- По тому, с каким числом радикалов связан атом углерода, соединенный с группой ОН-, спирты разделяют на первичные, вторичные, третичные.
- По характеру связей радикала спирты бывают предельными, непредельными, ароматическими. В ароматических спиртах гидроксил связан не напрямую с бензольным кольцом, а через другой (другие) радикалы.
- Соединения, в которых ОН- прямо связана с бензольным циклом, считаются отдельным классом фенолов.

Свойства

В зависимости от того, сколько в молекуле углеводородных радикалов, спирты могут быть жидкими, вязкими, твердыми. Водорастворимость уменьшается с ростом количества радикалов.

Простейшие спирты смешиваются с водой в любых пропорциях. Если же в молекулу входит более 9 радикалов, то вообще не растворяются в воде. Все спирты хорошо растворяются в органических растворителях.
- Спирты горят, выделяя большое количество энергии.
- Вступают в реакции с металлами, в результате чего получаются соли - алкоголяты.
- Взаимодействуют с основаниями, проявляя качества слабых кислот.
- Реагируют с кислотами и ангидридами, проявляя оснóвные свойства. Результатом реакций являются сложные эфиры.
- Воздействие сильными окислителями приводит к образованию альдегидов или кетонов (в зависимости от вида спирта).
- При определенных условиях из спиртов получают простые эфиры, алкены (соединения с двойной связью), галогенуглеводороды, амины (производные от аммиака углеводороды).

Спирты токсичны для человеческого организма, некоторые - ядовиты (метилен, этиленгликоль). Этилен оказывает наркотическое воздействие. Опасны и пары спиртов, поэтому работы с растворителями на основе спирта должны производиться с соблюдением техники безопасности.

Тем не менее, спирты участвуют в естественном метаболизме растений, животных и человека. К категории спиртов относятся такие жизненно важные вещества как витамины A и D, стероидные гормоны эстрадиол и кортизол. Более половины липидов, поставляющих энергию нашему организму, имеют в своей основе глицерин.

Применение

В органическом синтезе.
- Биотопливо, добавки в топливо, ингредиент тормозной жидкости, гидравлических жидкостей.
- Растворители.
- Сырье для производства ПАВ, полимеров, пестицидов, антифризов, взрывчатых и отравляющих веществ, бытовой химии.
- Душистые вещества для парфюмерии. Входят в состав косметических и медицинских средств.
- Основа алкогольных напитков, растворитель для эссенций; сахарозаменитель (маннит и т.п.); краситель (лютеин), ароматизатор (ментол).

В нашем магазине можно купить спирты разного вида.

Бутиловый спирт

Одноатомный спирт. Применяется в качестве растворителя; пластификатора при изготовлении полимеров; модификатора формальдегидных смол; сырья для органического синтеза и получения душистых веществ для парфюмерии; добавки к топливу.

Фурфуриловый спирт

Одноатомный спирт. Востребован для полимеризации смол и пластиков, как растворитель и пленкообразователь в лакокрасочной продукции; сырье для органического синтеза; связующий и уплотняющий агент при производстве полимербетона.

Изопропиловый спирт (пропанол-2)

Вторичный одноатомный спирт. Активно используется в медицине, металлургии, химпроме. Заменитель этанола в парфюмерных, косметических, дезинфицирующих продуктах, средствах бытовой химии, антифризах, очистителях.

Этиленгликоль

Двухатомный спирт. Применяется при производстве полимеров; красок для типографий и текстильного производства; входит в состав антифризов, тормозных жидкостей, теплоносителей. Используется для осушения газов; как сырье для органического синтеза; растворитель; средство для криогенной «заморозки» живых организмов.

Глицерин

Трехатомный спирт. Востребован в косметологии, пищепроме, медицине, как сырье в орг. синтезе; для изготовления взрывчатого вещества нитроглицерина. Применяется в сельском хозяйстве, электротехнике, текстильной, бумажной, кожевенной, табачной, лакокрасочной индустрии, в производстве пластиков и средств бытовой химии.

Маннит

Шестиатомный (многоатомный) спирт. Применяется как пищевая добавка; сырье для изготовления лаков, красок, олиф, смол; входит в состав ПАВ, парфюмерных продуктов.

(алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами )

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO –С H 2 – CH 2 – OH , глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода

есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH (OH ) 2 ® RCH = O + H 2 O , не существуют.

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол С

H 3 – CH 2 – OH , пропанол С H 3 – CH 2 – CH 2 – OH. б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы

R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны:

CH 2 =CH–OH ® CH 3 –CH=O Номенклатура спиртов. Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»: В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4): 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами. Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НС є С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH. Физические свойства спиртов. Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R , содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов. Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

CH 3 OH + 2 Na ® 2 CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O

® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент

R – O – A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разраваются, в результате образуются простые эфиры – соединения, содержащие фрагмент

R –О– R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).


Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов. Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400

° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия: ® Н 3 СОН Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12) 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ Применение спиртов. Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы, содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок.

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин

HOCH 2 – CH (OH )– CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (

HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН 2 –(СНОH) 3 –CН 2 ОН и сорбит neНОСН 2 – (СНОН) 4 –СН 2 OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни.

Михаил Левицкий

ЛИТЕРАТУРА Шабаров Ю.С. Органическая химия . Москва, «Химия», 1994

Физические свойства

МЕТАНОЛ (древесный спирт) – жидкость (t кип =64,5; t пл =-98; ρ = 0,793г/см 3), с запахом алкоголя, хорошо растворяется в воде. Ядовит – вызывает слепоту, смерть наступает от паралича верхних дыхательных путей.

ЭТАНОЛ (винный спирт) – б/цв жидкость, с запахом спирта, хорошо смешивается с водой.

Первые представители гомологического ряда спиртов - жидкости, высшие - твердые вещества. Метанол и этанол смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в воде падает. Высшие спирты практически нерастворимы в воде.

В химических реакциях гидроксисоединений возможно разрушение одной из двух связей:

· С–ОН с отщеплением ОН-группы

· О–Н с отщеплением водорода

Это могут быть реакции замещения , в которых происходит замена ОН или Н, или реакция отщепления (элиминирования), когда образуется двойная связь.

Полярный характер связей С–О и О–Н способствует гетеролитическому их разрыву и протеканию реакций по ионному механизму. При разрыве связи О–Н с отщеплением протона (Н +) проявляются кислотные свойства гидроксисоединения, а при разрыве связи С–О – свойства основания и нуклеофильного реагента.

С разрывом связи О–Н идут реакции окисления, а по связи С–О – восстановления.

Таким образом, гидроксисоединения могут вступать в многочисленные реакции, давая различные классы соединений. Вследствие доступности гидроксильных соединений, в особенности спиртов, каждая из этих реакций является одним из лучших способов получения определенных органических соединений.

I. Кислотно-основные

RO + H + ↔ ROH ↔ R + + OH —

алкоголят-ион

Кислотные свойства уменьшаются в ряду, а основные возрастают:

HOH → R-CH 2 -OH → R 2 CH-OH → R 3 C-OH

вода первичный вторичный третичный

Кислотные свойства

С активными щелочными металлами :

2C 2 H 5 OH + 2 Na → 2C 2 H 5 ONa + H 2

этилат натрия

Алкоголяты подвергаются гидролизу, это доказывает, что у воды более сильные кислотные свойства

C 2 H 5 ONa + H 2 O ↔ C 2 H 5 OH + NaOH

Основные свойства

С галогенводородными кислотами :

C 2 H 5 OH + HBr H2SO4( конц ) C 2 H 5 Br + H 2 O

бромэтан

Лёгкость протекания реакции зависит от природы галогенводорода и спирта – увеличение реакционной способности происходит в следующих рядах:

HF < HCl < HBr < HI
первичные < вторичные < третичные

II . Окисление

1). В присутствии окислителей [ O ] – K 2 Cr 2 O 7 или KMnO 4 спирты окисляются до карбонильных соединений:

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот.

При окислении вторичных спиртов образуются кетоны.

Третичные спирты более устойчивы к действию окислителей. Они окисляются только в жестких условиях (кислая среда, повышенная температура), что приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов (карбоновых кислот и кетонов с меньшей молекулярной массой).

В кислой среде:

Для первичных и вторичных одноатомных спиртов качественной реакцией является взаимодействие их с кислым раствором дихромата калия. Оранжевая окраска гидратированного иона Cr 2 O 7 2- исчезает и появляется зеленоватая окраска, характерная для иона Cr 3+ . Эта смена окраски позволяет определять даже следовые количества спиртов.

CH 3 — OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → CO 2 + K 2 SO 4 + Cr 2 (SO 4) 3 + 6H 2 O

3CH 3 -CH 2 -OH + K 2 Cr 2 O 7 + 4H 2 SO 4 → 3CH 3 COH + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

В более жёстких условиях окисление первичных спиртов идёт сразу до карбоновых кислот:

3CH 3 -CH 2 -OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 t → 3CH 3 COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

Третичные спирты устойчивы к окислению в щелочной и нейтральной среде. В жёстких условиях (при нагревании, в кислой среде) они окисляются с расщеплением связей С-С и образованием кетонов и карбоновых кислот.

В нейтральной среде:

CH 3 OH + 2 KMnO 4 K 2 CO 3 + 2 MnO 2 + 2 H 2 O , а остальные спирты до солей соответствующих карбоновых кислот.

2). Качественная реакция на первичные спирты!

3). Горение (с увеличением массы углеводородного радикала – пламя становится всё более коптящим)

C n H 2n+1 -OH + O 2 t → CO 2 + H 2 O + Q

III. Реакции отщепления

1) Внутримолекулярная дегидратация

CH 3 -CH 2 -CH(OH)-CH 3 t>140,H2SO4( к ) → CH 3 -CH=CH-CH 3 + H 2 O

бутанол-2 бутен-2

дегидратация идет преимущественно в направлении I, т.е. по правилу Зайцева – с образованием более замещенного алкена. Правило Зайцева : Водород отщепляется от наименее гидрированного атома углерода соседствующего с углеродом, несущим гидроксил.

2) Межмолекулярная дегидратация

2C 2 H 5 OH t<140,H2SO4( к ) С 2 H 5 -O-C 2 H 5 + H 2 O

простой эфир

— при переходе от первичных спиртов к третичным увеличивается склонность к отщеплению воды и образованию алкенов; уменьшается способность образовывать простые эфиры.

3) Реакция дегидрирование и дегидратация предельных одноатомных спиртов реакция С.В. Лебедева

2C 2 H 5 OH 425,ZnO,Al2O3 → CH 2 =CH-CH=CH 2 + H 2 + 2H 2 O

IV. Реакции этерификации

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Которые в своем составе содержат одну или несколько гидроксильных группу. В зависимости от количества групп ОН эти делятся на одноатомные спирты, трехатомные и т.д. Чаще всего эти сложные вещества рассматривают как производные углеводородов, молекулы которых претерпели изменения, т.к. один или несколько атомов водорода заместились на гидроксильную группу.

Наиболее простыми представителями данного класса являются одноатомные спирты, общая формула которых выглядит так: R-OH или

Cn+ H 2n+1OH.

  1. Спирты, содержащие до 15 атомов углерода - жидкости, 15 и более - твердые вещества.
  2. Растворимость в воде зависит от молекулярной массы, чем она выше, тем спирт хуже растворяется воде. Так, низшие спирты (до пропанола) смешиваются с водой в любых пропорциях, а высшие практически не растворимы в ней.
  3. Температура кипения также возрастает с увеличением атомной массы, например, t кип. СН3ОН= 65 °С, а t кип. С2Н5ОН =78 °С.
  4. Чем выше температура кипения, тем ниже летучесть, т.е. вещество плохо испаряется.

Данные физические свойства насыщенных спиртов с одной гидроксильной группой можно объяснить возникновением межмолекулярной водородной связи между отдельными молекулами самого соединения или спирта и воды.

Одноатомные спирты способны вступать в такие химические реакции:

Рассмотрев химические свойства алкоголей, можно сделать вывод, что одноатомные спирты - это амфотерные соединения, т.к. они могут реагировать с щелочными металлами, проявляя слабые и с галогенводородами, проявляя основные свойства. Все химические реакции идут с разрывом связи О-Н или С-О.

Таким образом, предельные одноатомные спирты - это сложные соединения с одной группой ОН, не имеющие свободных валентностей после образования связи С-С и проявляющие слабо свойства и кислот, и оснований. За счет своих физических и химических свойств они нашли широкое применение в органическом синтезе, в производстве растворителей, добавок к топливу, а также в пищевой промышленности, медицине, косметологии (этанол).