Что называется гармоническим осциллятором. Уравнение гармонического осциллятора

Гармоническим осциллятором называют частицу, совершающую одномерное движение под действием квазиупругой силы . Потенциальная энергия такой частицы имеет вид

Выразив в формуле (27.1) k через получим

В одномерном случае Поэтому уравнение Шрёдингера (см. (21.5)) для осциллятора выглядит следующим образом:

Полная энергия, осциллятора). В теории дифференциальных уравнений доказывается, что уравнение (27.2) имеет конечные, однозначные и непрерывные решения при значениях параметра Е, равных

На рис. 27.1 дана схема энергетических уровней гармонического осциллятора. Для наглядности уровни вписаны в кривую потенциальной энергии. Однако следует помнить, что в квантовой механике полная энергия не может быть представлена в виде суммы точно определенных энергий Т и U (см. последний абзац предыдущего параграфа).

Уровни энергии гармонического осциллятора являются эквидистантными, т. е. отстоящими друг от друга на одинаковое расстояние. Наименьшее возможное значение энергии равно . Это значение называется нулевой энергией.

Существование нулевой энергии подтверждается экспериментами по изучению рассеяния света кристаллами при низких температурах. Оказывается, что интенсивность рассеянного света по мере понижения температуры стремится не к нулю, а к некоторому конечному значению, указывающему на то, что и при абсолютном нуле колебания атомов в кристаллической решетке не прекращаются.

Квантовая механика позволяет вычислить вероятности различных переходов квантовой системы из одного состояния в другое. Подобные вычисления показывают, что для гармонического осциллятора возможны лишь переходы между соседними уровнями. При таких переходах квантовое число изменяется на единицу:

Условия, накладываемые на изменения квантовых чисел при переходах системы из одного состояния в другое, называются правилами отбора.

Таким образом, для гармонического осциллятора существует правило отбора, выражаемое формулой (27.4).

Из правила (27.4) вытекает, что энергия гармонического осциллятора может изменяться только порциями /гto. Этот результат, получающийся естественным образом в квантовой механике, совпадает с тем весьма чужеродным для классической физики предположением, которое пришлось сделать Планку, чтобы вычислить испускательную способность абсолютно черного тела (см. § 7). Отметим, что Планк предполагал, что энергия гармонического осциллятора может быть лишь целой кратной На. В действительности же имеется еще нулевая энергия, существование которой было установлено только после создания квантовой механики.

Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного растянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равновесия (фиг. 21.1). Отклонения вверх от положения равновесия мы обозначим через и предположим, что имеем дело с абсолютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умноженное на массу ускорение должно быть равно

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что . Нам предстоит решить уравнение

Фиг. 21.1. Грузик, подвешенный на пружинке. Простой пример гармонического осциллятора.

После этого мы вернемся к уравнению (21.2), в котором и содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начинали изучать механику. Мы решили его численно, чтобы найти движение. Численным интегрированием мы нашли кривую, которая показывает, что если частица в начальный момент выведена из равновесия, но покоится, то она возвращается к положению равновесия. Мы не следили за частицей после того, как она достигла положения равновесия, но ясно, что она на этом не остановится, а будет колебаться (осциллировать). При численном интегрировании мы нашли время возврата в точку равновесия: . Продолжительность полного цикла в четыре раза больше: «сек». Все это мы нашли численным интегрированием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее продифференцировать дважды, переходит в себя, умножившись на . (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: . Продифференцируем ее: , a . В начальный момент , , а начальная скорость равна нулю; это как раз те предположения, которые мы делали при численном интегрировании. Теперь, зная, что , найдем точное значение времени, при котором . Ответ: , или 1,57108. Мы ошиблись раньше в последнем знаке, потому что численное интегрирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет решением в этом случае? Может быть, мы учтем постоянные и , умножив на соответствующий множитель ? Попробуем. Пусть , тогда и . К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умножить решение уравнения на постоянную, то мы снова получим решение. Математически ясно - почему. Если есть решение уравнения, то после умножения обеих частей уравнения на производные тоже умножатся на и поэтому так же хорошо удовлетворит уравнению, как и . Послушаем, что скажет по этому поводу физик. Если грузик растянет пружинку вдвое больше прежнего, то вдвое возрастет сила, вдвое возрастет ускорение, в два раза больше прежней будет приобретенная скорость и за то же самое время грузик пройдет вдвое большее расстояние. Но это вдвое большее расстояние - как раз то самое расстояние, которое надо пройти грузику до положения равновесия. Таким образом, чтобы достичь равновесия, требуется столько же времени и оно не зависит от начального смещения. Иначе говоря, если движение описывается линейным уравнением, то независимо от «силы» оно будет развиваться во времени одинаковым образом.

Ошибка пошла нам на пользу - мы узнали, что, умножив решение на постоянную, мы получим решение прежнего уравнения. После нескольких проб и ошибок можно прийти к мысли, что вместо манипуляций с надо изменить шкалу времени. Иначе говоря, уравнение (21.2) должно иметь решение вида

(Здесь - вовсе не угловая скорость вращающегося тела, но нам не хватит всех алфавитов, если каждую величину обозначать особой буквой.) Мы снабдили здесь индексом 0, потому что нам предстоит встретить еще много всяких омег: запомним, что соответствует естественному движению осциллятора. Попытка использовать (21.4) в качестве решения более успешна, потому что и . Наконец-то мы решили то уравнение, которое и хотели решить. Это уравнение совпадает с (21.2), если .

Теперь нужно понять физический смысл . Мы знаем, что косинус «повторяется» после того, как угол изменится на . Поэтому будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на . Величину часто называют фазой движения. Чтобы изменить на , нужно изменить на (период полного колебания); конечно, находится из уравнения . Это значит, что нужно вычислять для одного цикла, и все будет повторяться, если увеличить на ; в этом случае мы увеличим фазу на . Таким образом,

. (21.5)

Значит, чем тяжелее грузик, тем медленнее пружинка будет колебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожестче, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не говорит об амплитуде колебания. Амплитуду колебания, конечно, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Решение соответствует случаю, когда в начальный момент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например, улучить момент, когда уравновешенная пружинка покоится , и резко ударить по грузику; это будет означать, что в момент пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) - косинус нужно заменить на синус. Бросим в косинус еще один камень: если - решение, то, войдя в комнату, где качается пружинка, в тот момент (назовем его «»), когда грузик проходит через положение равновесия , мы будем вынуждены заменить это решение другим. Следовательно, не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойством обладает, например, решение , где - какая-то постоянная. Далее, можно разложить называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифференциальным уравнением. Другие величины уравнением не определяются, а зависят от начальных условий. Постоянная служит мерой максимального отклонения груза и называется амплитудой колебания. Постоянную иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой и говорят, что фаза зависит от времени. Можно сказать, что - это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным соответствуют движения с разными фазами. Вот это верно, а называть ли фазой или нет - уже другой вопрос.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).


Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.

Гармонический осциллятор.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).

Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.

Тела, которые при движении совершают гармонические ко­лебания, называют гармоническими осциляторами. Рассмотрим ряд примеров гармонических осциляторов.

Пример1. Пружинный маятник – это тело массой m , способное совершать колебания под действием силы упругости невесомой (m пружины  m тела ) пружины (рис.4.2).

Т

Рис.4.3. Физический маятник.

рением в системе пренебрегаем. При смещении тела на расстояние х от положе­ния равновесия О на него дейст­вует сила уп­ругости пружины, направленная к положению равновесия:
, гдеk - коэффициент упругости (жесткости) пружины. По второму закону Ньютона
. От­сюда
и, если обозначить
, тогда получим
дифференциальное урав­нение гармонических колебаний. Его решения имеют вид
либо
. Таким образом, колебания пружинного маятника - гармонические с циклической час­тотой
и периодом
.

Пример 2. Физический маятник - это твердое тело, совер­шаю­щее колебания под действием силы тяжести вокруг подвижной го­ризон­тальной оси, не совпадающей с его цен­тром тяжести С (рис. 4. 3). Ось проходит через точку О. Если маятник откло­нить от положения равновесия на малый угол  и отпус­тить, он будет совершать ко­лебания, следуя основному уравнению динамики вращательного движения твердого тела
, гдеJ - момент инерции маятника относительно оси, М ‑ момент силы, возвращающей физический маятник в поло­жение равно­весия. Он создается силой тяжести , ее момент равен
(l =ОС). В результате получаем
. Это дифференциальное уравнение колебаний для произвольных углов отклонения. При малых углах, когда
,
или, принимая
, получим дифференциальное уравнение колебания физического маятника
. Его решения имеют вид
или
. Таким образом, при малых отклонениях от положения равновесия физический маят­ник совершает гармонические колебания с циклической частотой
и периодом
.

Пример3. Математический маятник - это материальная точка с массой m (тяжелый шарик малых размеров), подвешенная на невесомой (по сравнению с m шарика), уп­ругой, нерастяжимой нити длинною l . Если вывести шарик из положения равновесия, отклонив его от вертикали на небольшой угол , а затем отпустить, он будет совершать колебания. Если рассматривать данную систему как физический маятник с моментом инерции материальной точки J = ml 2 , то из формул для физического маятника получим выражения для циклической частоты и периода колебаний математического маятника

,
.

4. 4. Затухающие колебания . @

В рассмотренных примерах гармонических колебаний единственной силой, действующей на материальную точку (тело), была квазиупругая сила F и не учитывались силы сопротивления, которые присутству­ют в лю­бой реальной системе. Поэтому рассмотренные колебания можно назвать идеальными незатухающими гармоническими колебаниями.

Наличие в реальной колебательной системе силы сопротивления среды при­во­дит к уменьшению энергии системы. Если убыль энергии не пополнять за счет работы внешних сил, колебания будут затухать. Затухающими называются колеба­ния с уменьшающейся во времени амплитудой.

Рассмотрим свободные затухающие колебания. При небольших скоростях сила сопротивления F C пропорциональна скорости v и обратно пропорциональна ей по направлению
, гдеr - коэффициент сопротивления среды. Используя второй закон Ньютона , получим дифференциальное уравнение затухающих колебаний
,
,
. Обозначим
,
. Тогда дифференциальное уравнение приобретает вид:

Рис.4.4. Зависимость смеще­ния и амплитуды затухаю­щих колебаний от времени.


.

Это дифференциальное уравнение затухающих колебаний. Здесь  0 - собственная частота колеба­ний системы, т.е. частота свободных колебаний при r=0,  - коэффициент зату­хания оп­ределяет скорость убывания амплитуды. Решениями этого уравнения при условии  0 являются

либо
.

График последней функции представлен на рис.4.4. Верхняя пунктирная линия дает график функции
, А 0 - амплитуда в начальный момент времени. Амплитуда во времени убывает по экспоненциальному закону,  - коэффициент зату­хания по величине обратен времени релакса­ции , т.е. вре­мени за которое амплитуда уменьшается в e раз, так как

,
, = 1, . Частота и период затухающих колебаний
,
; при очень малом сопротивлении среды ( 2  0 2) период колебаний практически ра­вен
. С ростом период колебаний увеличивается и при > 0 решение дифференциального уравнения показывает, что колебания не совершаются, а происходит монотонное движение системы к положению равновесия. Такое движение называют апериодическим.

Для характеристики скорости затухания колебаний служат еще два параметра: декремент затухания D и логарифмический декремент . Декремент затуха­ния показывает во сколько раз уменьшается амплитуда колебаний за время од­ного периода Т.

Н

Рис.4.5. Вид резонансных кривых.

атуральный логарифм от декремента затухания есть логарифмический декремент

Так как, то
, гдеN - число колебаний за время.