Принципиальная схема точечной сварки. Режимы точечной сварки, параметры. Машины для контактной сварки

Точечная сварка – достаточно распространенный и востребованный метод соединения металла, являющийся разновидностью контактной сварки. В этой статье мы рассмотрим принцип действия точечной сварки, разновидности машин для точечной сварки, их особенности, а также сам процесс точечной сварки и технику безопасности при ведении точечной сварки.

Что такое точечная сварка?

При точечной сварке металлов свариваемые детали привариваются друг к другу в одной либо нескольких точках – отсюда и название. Прочность соединения зависит от структуры и размеров точки, которые, в свою очередь, определяются свойствами электродов, сварочного тока, времени протекания тока через детали, усилия сжатия и самих поверхностей соединяемых деталей.

Сварка, имеет высокую степень травматизма, поэтому соблюдайте технику безопасности

Точечная контактная сварка – весьма перспективный метод соединения металла. Он отличается высокой производительностью и широкой областью применения – от соединения тонких деталей электронных приборов до разнообразных конструкций из стальных листов толщиной до 20 миллиметров для автомобилестроения, самолетостроения, судостроения, машиностроения и других областей промышленности. Также метод контактной сварки используется для прокладки нефтепроводов и газопроводов.

За счет легкой автоматизации процесса контактная точечная сварка широко применяется на различных производствах, при серийном массовом производстве каких-либо изделий. Здесь стоит отметить то, что прочность получаемых контактной сваркой соединений мало зависит от квалификации сварки и находится на высоком уровне.

Принцип действия точечной сварки

Как уже говорилось выше, точечная сварка – разновидность контактной. При этом сварное соединение образуется посредством нагревания металла с помощью пропускаемого через него тока и пластической деформации сварной зоны под воздействием сжимающих усилий.

В основе контактной сварочной технологии лежит разогрев металла под воздействием электричества по закону Джоуля-Ленца. При сварке ток идет между электродами, проходя при этом через металл свариваемых деталей. При этом электроды изготавливают из материалов с хорошей электропроводностью, чтобы сопротивление контакта детали и электрода было наименьшим.

За счет наибольшего сопротивления контакта деталей между собой наибольший нагрев происходит именно там. При этом нагрев и плавление металла приводит к появлению литых ядер сварных точек. Как правило, их диаметр составляет 4-12 миллиметров.

Разновидности и аппараты точечной сварки

Методы точечного соединения металла можно разделить на две группы: мягкие и жесткие.

Мягкие режимы отличаются плавным нагревом деталей с помощью умеренного тока (плотность тока на поверхности электродов обычно не превышает ста ампер на квадратный миллиметр). Разогрев происходит за 0.5-3 секунды. Такие режимы характеризуются меньшей потребляемой мощностью (если их сравнивать с жесткими режимами), меньшими нагрузками на электросеть, меньшими требованиями к мощности и цене сварочных машин, меньшей закалкой сварочной зоны. Такие режимы часто используются для сваривания склонных к закалке сталей.

Жесткие режимы отличаются меньшей продолжительностью процесса, более сильными токами и давлением при сжатии деталей. Плотность тока достигает трехсот ампер на квадратный миллиметр при сваривании стали. Время разогрева длится от 0.1 до 1.5 секунд. Давление электродов обычно составляет от 3 до 8 килограмм на квадратный миллиметр. Недостатками таких режимов являются повышенные требовании к мощности аппаратов контактной точечной сварки, большие нагрузки на сеть. Преимущества – меньшее время процесса и большая производительность. Жесткие режимы контактной сварки часто используют для сварки сплавов меди и алюминия, деталей с высокой теплопроводностью, неравной толщины, а также для сварки высоколегированных сталей, так как такие режимы сохраняют их коррозионную стойкость.

Точечная сварка не только надежна, но и выглядит эстетично

Время приложения усилий сжатия и подачи сварочного тока определяются заданной циклограммой процесса соединения металла.

Таким образом, аппараты точечной сварки разделяются по мощности. Существует достаточно большое количество моделей машин для этого не сложного, но в тоже время серьезного процесса — от мощных станков с высокой производительностью до ручных переносных аппаратов.

Преимущества точечной сварки

Этот процесс соединения металла имеет массу преимуществ. К достоинствам метода соединения различных металлов следует отнести:

  • Возможность сварки тонких и очень тонких деталей из металлов различной природы (в том числе и дорогостоящих или легкоплавких сплавов). Во многих случаях такая возможность бывает весьма полезной, а аппарат точечной сварки – незаменимой машиной.
  • Хорошие прочностные характеристики сварочного соединения, а также хороший внешний вид соединений. Соединения, полученные контактной сваркой, не подвержены старению, структура металла в зоне сварки практически не меняется, за исключением некоторого увеличения размера зерен.
  • Высокую производительность контактной точечной сварки. Существуют машины контактной точечной сварки, позволяющие выполнять до восьмисот сварочных точек в минуту.
  • Возможность полной автоматизации процесса точечной сварки. Все большее распространение приобретают автоматизированные машины контактной сварки, сварочные роботы и т.д. Это позволяет существенно сократить затраты труда, снизить себестоимость оборудования и повысить продуктивность работы.
  • Экономичное расходование электродов, электрической энергии и других материалов. Себестоимость сварных точек также достаточно низка – хотя аппарат точечной сварки стоит достаточно дорого, за счет экономичного расходования материалов, высокой производительности аппарата и длительного срока службы себестоимость этого бесспорно не заменимого оборудования получается низкой.
  • Низкие требования к квалификации персонала – для того, чтобы использовать аппарат точечной контактной сварки, вовсе не обязательно быть высококвалифицированным специалистом.

Техника безопасности при точечной сварке

Как и любой сварочный процесс, этот метод тоже требует беспрекословного соблюдения определенных мер безопасности.

Средства защиты

Основная угроза при работе со сварочным оборудованием – поражение электрическим током и высокой температурой. Для предотвращения поражения электрическим током необходимо соблюдать такие меры безопасности, как заземление тех частей оборудования, которые должны быть заземлены, проверка исправности оборудования перед работой, использование средств защиты. Управляющие элементы аппарата для точечного соединения металлических деталей не должны быть под высоким напряжением. Все провода должны иметь достаточное сечение.

При контактной точечной сварке выделяются брызги и пары металла. Для предотвращения ожогов брызгами металла сварщик должен использовать рукавицы, спецодежду и очки с прозрачными стеклами либо головной щиток. Пары металла могут быть вредны для здоровья, поэтому необходимо использовать вентиляцию, а при необходимости – средства защиты органов дыхания.

Части аппарата для соединения металла, должны быть хорошо зачищены

Меры безопасности

Все блокировочные устройства и устройства быстрого отключения аппарата точечной сварки должны быть исправны, находиться на виду, к ним должен быть легкий доступ.

При проведении таких технических работ, как зачистка или смена электродов, нужно соблюдать меры, исключающие возможность смещения электрода и травмирования рук. При работе аппарата точечной сварки пространство зажимных механизмов нужно закрывать щитком, а при работе на мощных машинах – огораживать ширмами.

Должна быть исключена возможность травмирования сварщика движущимися частями аппарата точечной сварки.

Заключение

Мы рассмотрели технологию контактной точечной сварки, выявили основные ее преимущества, принцип действия, рассмотрели аппараты точечной сварки и технику безопасности при выполнении всего процесса.

Для соединения деталей используются разные способы сварки. Одной из широко используемых видов является точечная сварка. Особенно она необходима там, где требуется соединить детали с относительно тонкой стенкой. Это относится к частям корпуса электротехнических приборов и различным конструкциям из листовой стали, толщина которых не более 2 мм.

Сварка, выполняемая точечно в одной или нескольких местах деталей, относится к разновидности контактной сварки.

Нагрев металлического сплава и его последующее расплавление при этой технологии осуществляется за счет тепла, которое возникает за счет пропускания тока по электродам через соединяемые внахлест детали в области их плотного сжатия. Для этого параллельно с пропусканием электрического тока проводится механическое сжимание электродами соединяемых частей. При тесном контакте расплавленных участков происходит их сплавление, усиленное точечным диффузным проникновением при сжатии частей металла.

Контактная точечная сварка отличается:

  • мгновенным выполнением соединения (несколько секунд);
  • большим значением сварочного тока (свыше 1000А);
  • малым напряжением в рабочей зоне (от 1 до 10 В);
  • применением сжимающего сдавливания в точке сварки (от 10 до 100 кг и выше);
  • точечной областью сплавления.

Нагрев металла объясняется законом Джоуля Ленца, когда низкое сопротивление электродов обеспечивает хорошую электропроводность в месте его контакта с металлической поверхностью и усиливает силу тока в этом месте. Передавая максимально возможный ток металлическим деталям, электрод способствует их нагреву в месте соединения за счет большого сопротивления металла, препятствующего прохождению этого тока.

Максимальный нагрев в месте контакта электродов с поверхностью детали приводит к расплавлению металла в этом месте. При температуре плавления происходит образование литых точечных ядер, диаметр которых колеблется в диапазоне от 4 до 12 мм. Детали приваривают точечно в одном или нескольких местах.

При таком соединении его прочность напрямую зависит от структурного строения и размера точечного сплавления. Эти характеристики зависят от следующих факторов:

  • вида используемых электродов;
  • характера и силы тока при проведении сварки;
  • времени воздействия тока на соединяемые детали;
  • величины сжимающего усилия;
  • качества, толщины и характеристик металла свариваемых поверхностей.

Этапы работы

Процесс выполнения сварки происходит поэтапно:

  • Сначала создается плотный контакт деталей с помощью зажима между электродами.
  • После пропускания тока через электроды проводится точечное нагревание металла до температуры плавления с образованием ядра. При продолжении пропускании тока жидкое ядро увеличивается и достигает максимальной величины. Внутри расплавленного ядра происходит межкристаллическая перестройка металла с образованием новых структурных связей.
  • Одновременно проводится деформационное воздействие на зону контакта до окончательного формирования нужного размера точечного соединения. Достаточное сжимающее усилие обеспечивает плотное прижимание соединяемых частей и за счет этого происходит формирование вокруг зоны жидкого ядра уплотненного пояса, препятствующего выплескиванию расплава из зоны контактной сварки.
  • Последним этапом процесса сварки является отключение тока и охлаждение жидкого ядра металла с его постепенной окончательной кристаллизацией. При этом он становится меньше по размерам. При быстром охлаждении может возникнуть остаточное напряжение, которое негативно отражается на качестве соединения. Чтобы не допустить этого, усилие сжатия электродов снижают постепенно, не прерывая сразу вместе с отключением тока после выполнения работ. Это обеспечивает правильную структуру металла без напряжения в межкристаллических связях. Иногда на последней стадии работы советуют увеличить сжимающее усилие, чтобы обеспечить полную проковку металла в месте соединения и его однородность без присутствия напряжений.

Виды точечной сварки

Соединение деталей можно проводить двумя способами: с использованием мягкого или жесткого сварочного режима.

Выполнение работ с использованием мягкого режима отличается постепенным нагревом металла соединяемых деталей с использованием умеренного по силе плотности тока (не более 100 ампер/мм 2). Время разогрева от 0,5 до 3 секунд. При таком режиме происходит меньший расход потребляемой мощности и нагрузки на сеть. Поэтому он не нуждается в повышенных требованиях к мощности. Все это ведет к небольшой степени закалки зоны нагрева. Такой щадящий режим работы хорошо подходит для соединения сталей, которые чувствительны к термообработке и подвержены быстрой закалке появлением напряжения при агрессивных условиях проведения сварочных работ.

Технология жесткого режима основана на применении тока с высоким значением плотности и большим усилием сжатия при сдавливании деталей. Ток может иметь плотность до 300 ампер/мм 2 , а усилие сдавливания колеблется в интервале 3-8 кг/мм 2 . Время воздействия значительно короче, чем при выполнении работ в мягком режиме, и может продолжаться от 0,1 до 1,5 сек.

Для такого режима требуется использовать аппарат для точечной сварки, потребляющий значительную мощность. Зато процесс соединения деталей осуществляется быстро, обеспечивая высокую степень производительности. Жесткий режим сварочных работ часто используется для соединения медных или алюминиевых сплавов, а также легированных стальных изделий с большой теплопроводностью. Работа в таком режиме помогает сохранить их коррозионную устойчивость.

Применяемое оборудование

Для выполнения точечной стыковки деталей существует много разных по виду и принципу работы устройств, которые отличаются техническими параметрами и имеют различные режимы работ.

Аппарат точечной сварки различается, прежде всего, потребляемой при работе мощностью. Он может быть в виде машины с большими габаритами и высоким уровнем производительности, но потреблять при этом большую мощность.

Также есть устройства, имеющие вид небольшого переносного аппарата, который можно использовать для проведения разовых сварочных работ в быту.

Существующие сварочные аппараты отличаются характером тока в процессе выполнения сварного соединения. Он зависит от принципа устройства и схемы электрической замкнутой цепи.

Сварочное оборудование для точечной сварки производят в виде:

  • машин, которые осуществляют сварное соединение на переменном токе;
  • аппаратов, использующих токи низкой частоты;
  • машин, проводящих сварку в режиме конденсатора;
  • машин, использующих для сварки постоянный ток.

Наибольшее применение имеет точечный сварочный аппарат, который осуществляет процесс сварки на переменном токе. В таких машинах напряжение для работы получают путем преобразования сетевого напряжения 220 или 380 вольт с использованием трансформатора, время работы которого регулируется специальным модулем, управляющим контроллером и другими приборами, включенными в схему.

Разновидностью таких машин, работающих на переменном токе, является устройство МТР-1210, работающее на пневматическом приводе. Современной установкой для точечного соединения на переменном токе является машина МТР-16053, которая имеет электронное управление процессом сварки.

Конденсаторный режим сварочных работ состоит в постепенном накоплении электроэнергии конденсатором во время его зарядки. Затем осуществляется быстрый расход этой электроэнергии при генерации большого импульса тока. Это дает возможность проводить процесс очень быстро и расходовать при этом меньшую электроэнергию и мощность. Импульсный расход электроэнергии дает максимально сконцентрированное тепло за короткий промежуток времени, что создает минимальную термическую зону соединения деталей. Примером конденсаторной машины является аппарат точечной сварки МТК-2002ЭК.

К машинам, работающим на постоянном токе, относится устройство МТВР-19053. Оно имеет особую конструкцию хоботов и вставленных в них электродов. Это дает возможность выполнять сварное соединение различных по форме и размеру деталей.

Какие электроды нужны для точечной сварки

Эффективность выполнения работ во многом зависит от характеристик электродов: их размера, формы и материала, из которого они изготовлены. Электроды для точечной сварки выполняют двойную функцию: проводят ток в область сварки и обеспечивают зажимное усилие.

Электроды бывают прямой и фигурной формы. В основном используются прямые устройства, т. к. они обеспечивают свободный доступ к точке соединения.

Форма наконечника электродов бывает плоской и сферической и характеризуется соответственно размером диаметра (d) плоского сечения или радиусом (R) сферического конца. От этих размеров зависит величина контактной площади электрода с поверхностью металлической детали, что напрямую влияет на плотность подаваемого тока и силу сдавливания деталей. От этих характеристик зависит величина полученного расплава и размеры ядра.

Электроды, имеющие сферическую форму наконечника, более устойчивы к изнашиванию и не так чувствительны в случае их неправильной ориентации к поверхности детали при установке. Поэтому их особенно рекомендуют применять для сваривания мягких сплавов на основе алюминия или других, т. к. они, в отличие от изделий с плоским сечением наконечника, не оставляют вмятин и повреждений на поверхности. На практике сферические электроды преимущественно используют при точечной сварке любых сплавов.

Размеры электродов обозначены в ГОСТе 14111-90 и имеют значения от 10 до 40 мм. Их выбор зависит от размера толщины соединяемых деталей. Рекомендуемые для определенной толщины размеры рабочей зоны электродов показаны в таблице:

* в новом варианте ГОСТа вместо значения диаметра D=12 мм, включен размер 10 мм и 13 мм.

Существенное влияние оказывает также материал, из которого изготовлен электрод. Он определяет характеристики электрического сопротивления, теплопроводности и прочности электрода при повышенных температурах. При циклических изменениях высокой температуры и нагрузки электрод подвергается повышенному износу в месте рабочей зоны. Поэтому эта часть электрода изготавливается из жаропрочных сплавов меди с высокой электропроводностью и большой проводимостью тепла.

Область применения

Точечная сварка используется в промышленном масштабе при производстве конструкций путем штамповки с одновременной точечной сварочной стыковкой. Этот способ соединения применяется в изготовлении деталей для автомобилей, самолетов, космической, сельскохозяйственной и другой техники, имеющей в конструкции профильные формы. Также такая сварка применяется для создания миниатюрных узлов в приборостроительной сфере, в том числе для производства электронных устройств, где используются детали с тонкой стенкой.


Точечная сварка является разновидностью контактной сварки. При этом способе, нагрев металла до температуры его плавления осуществляется теплом, которое образуется при прохождении большого электрического тока от одной детали к другой через место их контакта. Одновременно с пропусканием тока и некоторое время спустя после него производится сжатие деталей, в результате чего происходит взаимное проникновение и сплавление нагретых участков металла.

Особенностями контактной точечной сварки являются: малое время сварки (от 0,1 до нескольких секунд), большой сварочный ток (более 1000А), малое напряжение в сварочной цепи (1-10В, обычно 2-3В), значительное усилие сжимающее место сварки (от нескольких десятков до сотен кг), небольшая зона расплавления.

Точечную сварку чаще всего применяют для соединения листовых заготовок внахлестку, реже - для сварки стержневых материалов. Диапазон толщин, свариваемых ею, составляет от нескольких микрометров до 2-3 см, однако чаще всего толщина свариваемого металла варьируется от десятых долей до 5-6 мм.

Кроме точечной, существуют и другие виды контактной сварки (стыковая, шовная и пр.), однако точечная сварка является наиболее распространенной. Она применятся в автомобилестроении, строительстве, радиоэлектронике, авиастроении и многих других отраслях. При строительстве современных лайнеров, в частности, производится несколько миллионов сварных точек.

Заслуженная популярность

Большая востребованность точечной сварки обусловлена целым рядом достоинств, которыми она обладает. В их числе: отсутствие необходимости в сварочных материалах (электродах, присадочных материалах, флюсах и пр.), незначительные остаточные деформации, простота и удобство работы со сварочными аппаратами, аккуратность соединения (практическое отсутствие сварного шва), экологичность, экономичность, подверженность легкой механизации и автоматизации, высокая производительность. Автоматы точечной сварки способны выполнять до нескольких сотен сварочных циклов (сварных точек) в минуту.

К недостаткам можно отнести отсутствие герметичности шва и концентрацию напряжений в точке сварки. Причем последние могут быть значительно уменьшены или вообще устранены особыми технологическими приемами.

Последовательность процессов при контактной точечной сварке

Весь процесс точечной сварки можно условно разделить на 3 этапа.
  • Сжатие деталей, вызывающее пластическую деформацию микронеровностей в цепочке электрод-деталь-деталь-электрод.
  • Включение импульса электрического тока, приводящего к нагреву металла, его расплавлению в зоне соединения и образованию жидкого ядра. По мере прохождения тока ядро увеличивается по высоте и диаметру до максимальных размеров. Происходит образование связей в жидкой фазе металла. При этом продолжается пластическая осадка контактной зоны до окончательного размера. Сжатие деталей обеспечивает образование уплотняющего пояса вокруг расплавленного ядра, который препятствует выплеску металла из зоны сварки.
  • Выключение тока, охлаждение и кристаллизация металла, заканчивающаяся образованием литого ядра. При охлаждении объем металла уменьшается, и возникают остаточные напряжения. Последние являются нежелательным явлением, с которым борются различными способами. Усилие, сжимающее электроды, снимается с некоторой задержкой после отключения тока. Это обеспечивает необходимые условия для лучшей кристаллизации металла. В некоторых случаях в заключительной стадии контактной точечной сварки рекомендуется даже увеличивать усилие прижима. Оно обеспечивает проковывание металла, устраняющее неоднородности шва и снимающее напряжения.

При следующем цикле все повторяется снова.

Основные параметры контактной точечной сварки

К основным параметрам контактной точечной сварки относятся: сила сварочного тока (I СВ), длительность его импульса (t СВ), усилие сжатия электродов (F СВ), размеры и форма рабочих поверхностей электродов (R - при сферической, d Э - при плоской форме). Для лучшей наглядности процесса эти параметры представляются в виде циклограммы, отражающей их изменение во времени.

Различают жесткий и мягкий режимы сварки. Первый характеризуется большим током, малой продолжительностью токового импульса (0,08-0,5 секунд в зависимости от толщины металла) и большой силой сжатия электродов. Его применяют для сварки медных и алюминиевых сплавов, обладающих большой теплопроводностью, а также высоколегированных сталей для сохранения их коррозионной стойкости.

При мягком режиме производится более плавный нагрев заготовок относительно небольшим током. Продолжительность сварочного импульса составляет от десятых долей до нескольких секунд. Мягкие режимы показаны для сталей, склонных к закалке. В основном именно мягкие режимы используются для контактной точечной сварки в домашних условиях, поскольку мощность аппаратов в этом случае может быть ниже, чем при жесткой сварке.

Размеры и форма электродов . С помощью электродов осуществляется непосредственный контакт сварочного аппарата с деталями, подвергаемыми сварке. Они не только подводят ток в зону сварки, но и передают сжимающее усилие и отводят тепло. Форма, размеры и материал электродов являются важнейшими параметрами аппаратов для точечной сварки.

В зависимости от их формы электроды подразделяются на прямые и фигурные. Наиболее распространены первые, они применяются для сварки деталей, допускающих свободный доступ электродов в свариваемую зону. Их размеры стандартизованы ГОСТом 14111-90, который устанавливает такие диаметры электродных стержней: 10, 13, 16, 20, 25, 32 и 40 мм.

По форме рабочей поверхности существуют электроды с плоскими и сферическими наконечниками, характеризуемыми соответственно значениями диаметра (d) и радиуса (R). От величины d и R зависит площадь контакта электрода с деталью, влияющая на плотность тока, давление и величину ядра. Электроды со сферической поверхностью имеют большую стойкость (способны сделать больше точек до переточки) и менее чувствительны к перекосам при установке, чем электроды с плоской поверхностью. Поэтому со сферической поверхностью рекомендуется изготовлять электроды, используемые в клещах, а также фигурные электроды, работающие с большими прогибами. При сварке легких сплавов (например, алюминия, магния) применяют только электроды со сферической поверхностью. Использование для этой цели электродов с плоской поверхностью приводит к чрезмерным вмятинам и подрезам на поверхности точек и повышенным зазорам между деталями после сварки. Размеры рабочей поверхности электродов выбирают в зависимости от толщины свариваемых металлов. Следует отметить, что электроды со сферической поверхностью могут быть использованы практически во всех случаях точечной сварки, электроды же с плоской поверхностью очень часто неприменимы.


* - в новом ГОСТе вместо диаметра 12 мм, введено 10 и 13 мм.

Посадочные части электродов (места соединяемые с электродержателем) должны обеспечивать надежную передачу электрического импульса и усилие прижима. Часто они выполняются в виде конуса, хотя существуют и другие виды соединений - по цилиндрической поверхности или резьбе.

Очень важное значение имеет материал электродов, определяющий их электрическое сопротивление, теплопроводность, термостойкость и механическую прочность при высоких температурах. В процессе работы электроды нагреваются до больших температур. Термоциклический режим работы, совместно с механической переменной нагрузкой, вызывает повышенный износ рабочих частей электродов, результатом чего становится ухудшение качества соединений. Чтобы электроды были в состоянии противостоять тяжелым условиям работы, их делают из специальных медных сплавов, обладающих жаропрочностью и высокой электро- и теплопроводностью. Чистая медь также способна работать в качестве электродов, однако она обладает низкой стойкостью и требует частых переточек рабочей части.

Сила сварочного тока . Сила сварочного тока (I СВ) - один из основных параметров точечной сварки. От нее зависит не только количество тепла, выделяющегося в зоне сварки, но и градиент его увеличения по времени, т.е. скорость нагрева. Напрямую зависят от I СВ и размеры сварного ядра (d, h и h 1), увеличивающиеся пропорционально увеличению I СВ.

Необходимо отметить, что ток, который протекает через зону сварки (I СВ), и ток, протекающий во вторичном контуре сварочной машины (I 2), различаются между собой - и тем больше, чем меньше расстояние между сварными точками. Причиной этого является ток шунтирования (I ш), протекающий вне зоны сварки - в том числе и через ранее выполненные точки. Таким образом, ток в сварочной цепи аппарата должен быть больше сварочного тока на величину тока шунтирования:

I 2 = I СВ + I ш

Для определения силы сварочного тока можно пользоваться разными формулами, которые содержат различные эмпирические коэффициенты, полученные опытным путем. В случаях, когда точное определение сварочного тока не требуется (что и бывает чаще всего), его значение принимают по таблицам, составленным для разных режимов сварки и различных материалов.

Увеличение времени сварки позволяет сваривать токами намного меньшими, чем приведенные в таблице для промышленных аппаратов.

Время сварки . Под временем сварки (t СВ) понимают продолжительность импульса тока при выполнении одной сварной точки. Вместе с силой тока, оно определяет количество теплоты, которое выделяется в зоне соединения при прохождении через нее электрического тока.

При увеличении t СВ повышается проплавление деталей и растут размеры ядра расплавленного металла (d, h и h 1). Одновременно с этим увеличивается и теплоотвод из зоны плавления, разогреваются детали и электроды, происходит рассеивание тепла в атмосферу. При достижении определенного времени может наступить состояние равновесия, при котором вся подводимая энергия отводится из зоны сварки, не увеличивая проплавление деталей и размер ядра. Поэтому увеличение t СВ целесообразно только до определенного момента.

При точном расчете продолжительности сварочного импульса должны учитываться многие факторы - толщина деталей и размер сварной точки, температура плавления свариваемого металла, его предел текучести, коэффициент аккумуляции тепла и пр. Есть сложные формулы с эмпирическими зависимостями, по которым при необходимости осуществляют расчет.

На практике чаще всего время сварки принимают по таблицам, корректируя при необходимости принятые значения в ту или иную сторону в зависимости от полученных результатов.

Усилие сжатия . Усилие сжатия (F СВ) оказывает влияние на многие процессы контактной точечной сварки: на пластические деформации, происходящие в соединении, на выделение и перераспределение тепла, на охлаждение металла и его кристаллизацию в ядре. С увеличением F СВ увеличивается деформация металла в зоне сварки, уменьшается плотность тока, снижается и стабилизируется электрическое сопротивление на участке электрод-детали-электрод. При условии сохранения размеров ядра неизменными, прочность сварных точек с ростом усилия сжатия возрастает.

При сварке на жестких режимах применяют более высокие значения F СВ, чем при мягкой сварке. Это связано с тем, что при увеличении жесткости возрастает мощность источников тока и проплавление деталей, что может приводить к образованию выплесков расплавленного металла. Большое усилие сжатия как раз и призвано воспрепятствовать этому.

Как уже отмечалось, для проковки сварной точки с целью снятия напряжений и повышения плотности ядра, технология контактной точечной сварки в некоторых случаях предусматривает кратковременное увеличение силы сжатия после отключения электрического импульса. Циклограмма в этом случае выглядит следующим образом.

При изготовлении простейших аппаратов контактной сварки для домашнего пользования нет большого резона заниматься точными расчетами параметров. Ориентировочные значения диаметра электродов, сварочного тока, времени сварки и усилия сжатия можно взять из таблиц, имеющихся во многих источниках. Нужно только понимать, что данные в таблицах являются несколько завышенными (или заниженными, если иметь в виду время сварки) по сравнению с теми, которые подойдут для домашних аппаратов, где обычно используются мягкие режимы.

Подготовка деталей к сварке

Поверхность деталей в зоне контакта деталей между собой и в месте контакта с электродами зачищают от окислов и других загрязнений. При плохой зачистке возрастают потери мощности, ухудшается качество соединений и увеличивается износ электродов. В технологии контактной точечной сварки, для зачистки поверхности используют пескоструйную обработку, наждачные круги и металлические щетки, а также травление в специальных растворах.

Высокие требования предъявляются к качеству поверхности деталей из алюминиевых и магниевых сплавов. Целью подготовки поверхности под сварку является удаление без повреждения металла относительно толстой пленки окислов с высоким и неравномерным электрическим сопротивлением.

Оборудование для точечной сварки

Различия между существующими видами аппаратов для точечной сварки определяются в основном родом сварочного тока и формой его импульса, которые производятся их силовыми электрическими контурами. По этим параметрам оборудование контактной точечной сварки подразделяется на следующие виды:
  • машины для сварки переменным током;
  • аппараты низкочастотной точечной сварки;
  • машины конденсаторного типа;
  • машины сварки постоянным током.

Каждый из этих типов машин имеет свои преимущества и недостатки в технологическом, техническом и экономическом аспектах. Наибольшее распространение получили машины для сварки переменным током.

Машины контактной точечной сварки переменного тока . Принципиальная схема машин для точечной сварки переменным током представлена на рисунке ниже.

Напряжение, при котором осуществляется сварка, формируется из напряжения сети (220/380В) с помощью сварочного трансформатора (ТС). Тиристорный модуль (КТ) обеспечивает подключение первичной обмотки трансформатора к питающему напряжению на необходимое время для формирования сварочного импульса. С помощью модуля можно не только управлять продолжительностью времени сварки, но и осуществлять регулирование формы подаваемого импульса за счет изменения угла открытия тиристоров.

Если первичную обмотку выполнить не из одной, а нескольких обмоток, то, подключая их в различном сочетании друг с другом, можно менять коэффициент трансформации, получая различные значения выходного напряжения и сварочного тока на вторичной обмотке.

Кроме силового трансформатора и тиристорного модуля, машины контактной точечной сварки переменного тока имеют набор управляющего оборудования - источник питания для системы управления (понижающий трансформатор), реле, логические контроллеры, панели управления и пр.

Конденсаторная сварка . Сущность конденсаторной сварки заключается в том, что сначала электрическая энергия относительно медленно накапливается в конденсаторе при его зарядке, а затем очень быстро расходуется, генерируя токовый импульс большой величины. Это позволяет производить сварку, потребляя из сети меньшую мощность по сравнению с обычными аппаратами для точечной сварки.

Кроме этого основного преимущества, конденсаторная сварка имеет и другие. При ней происходит постоянное контролируемое расходование энергии (той, которая накопилась в конденсаторе) на одно сварное соединение, что обеспечивает стабильность результата.

Сварка происходит за очень короткое время (сотые и даже тысячные доли секунды). Это дает концентрированное выделение тепла и минимизирует зону термического влияния. Последнее достоинство позволяет использовать её для сварки металлов с высокой электро- и теплопроводностью (медных и алюминиевых сплавов, серебра и др.), а также материалов с резко различающимися теплофизическими свойствами.

Жесткая конденсаторная микросварка используется в радиоэлектронной промышленности.

Количество энергии, накопленное в конденсаторах, можно рассчитать по формуле:

W = C U 2 /2

где С - емкость конденсатора, Ф; W - энергия, Вт; U - зарядное напряжение, В. Изменяя величину сопротивления в зарядной цепи, регулируют время зарядки, зарядный ток и потребляемую из сети мощность.

Дефекты контактной точечной сварки

При качественном исполнении, точечная сварка обладает высокой прочностью и способна обеспечить эксплуатацию изделия в течение длительного срока службы. При разрушениях конструкций, соединенных многоточечной многорядной точечной сваркой, разрушение происходит, как правило, по основному металлу, а не по сварным точкам.

Качество сварки зависит от приобретенного опыта, который сводится в основном к выдерживанию необходимой продолжительности токового импульса на основании визуального наблюдения (по цвету) за сварной точкой.

Правильно выполненная сварная точка расположена по центру стыка, имеет оптимальный размер литого ядра, не содержит пор и включений, не имеет наружных и внутренних выплесков и трещин, не создает больших концентраций напряжения. При приложении усилия на разрыв, разрушение конструкции происходит не по литому ядру, а по основному металлу.

Дефекты точечной сварки подразделяются на три типа:

  • отклонения размеров литой зоны от оптимальных, смещение ядра относительно стыка деталей или положения электродов;
  • нарушение сплошности металла в зоне соединения;
  • изменение свойств (механических, антикоррозионных и др.) металла сварной точки или прилегающих к ней областей.

Наиболее опасным дефектом считается отсутствие литой зоны (непровар в виде "склейки"), при котором изделие может выдерживать нагрузку при невысокой статической нагрузке, но разрушается при действии переменной нагрузки и колебаниях температуры.

Прочность соединения оказывается сниженной и при больших вмятинах от электродов, разрывах и трещинах кромки нахлестки, выплеске металла. В результате выхода литой зоны на поверхность, снижаются антикоррозионные свойства изделий (если они были).

Непровар полный или частичный, недостаточные размеры литого ядра . Возможные причины: мал сварочный ток, слишком велико усилие сжатия, изношена рабочая поверхность электродов. Недостаточность сварочного тока может вызываться не только его малым значением во вторичном контуре машины, но и касанием электрода вертикальных стенок профиля или слишком близким расстоянием между сварными точками, приводящим к большому шунтирующему току.

Дефект обнаруживается внешним осмотром, приподниманием кромки деталей пробойником, ультразвуковыми и радиационными приборами для контроля качества сварки.

Наружные трещины . Причины: слишком большой сварочный ток, недостаточная сила сжатия, отсутствие усилия проковки, загрязненная поверхность деталей и/или электродов, приводящая к увеличению контактного сопротивления деталей и нарушению температурного режима сварки.

Дефект можно обнаружить невооруженным глазом или с помощью лупы. Эффективна капиллярная диагностика.

Разрывы у кромок нахлестки . Причина этого дефекта обычно одна - сварная точка расположена слишком близко от края детали (недостаточна нахлестка).

Обнаруживается внешним осмотром - через лупу или невооруженным глазом.

Глубокие вмятины от электрода . Возможные причины: слишком малый размер (диаметр или радиус) рабочей части электрода, чрезмерно большое ковочное усилие, неправильно установленные электроды, слишком большие размеры литой зоны. Последнее может являться следствием превышения сварочного тока или длительности импульса.

Внутренний выплеск (выход расплавленного металла в зазор между деталями) . Причины: превышены допустимые значения тока или длительности сварочного импульса - образовалась слишком большая зона расплавленного металла. Мало усилие сжатия - не создался надежный уплотняющий пояс вокруг ядра или образовалась воздушная раковина в ядре, вызвавшая вытекание расплавленного металла в зазор. Неправильно (несоосно или с перекосом) установлены электроды.

Определяется методами ультразвукового или рентгенографического контроля или внешним осмотром (из-за выплеска может образоваться зазор между деталями).

Наружный выплеск (выход металла на поверхность детали) . Возможные причины: включение токового импульса при несжатых электродах, слишком большое значение сварочного тока или продолжительности импульса, недостаточное усилие сжатия, перекос электродов относительно деталей, загрязнение поверхности металла. Две последние причины приводят к неравномерной плотности тока и расплавлению поверхности детали.

Определяется внешним осмотром.

Внутренние трещины и раковины . Причины: слишком велики ток или продолжительность импульса. Загрязнена поверхность электродов или деталей. Мала сила сжатия. Отсутствует, опаздывает или недостаточно ковочное усилие.

Усадочные раковины могут возникать во время охлаждения и кристаллизации металла. Чтобы воспрепятствовать их возникновению, необходимо повышать силу сжатия и применять проковывающее сжатие в момент охлаждения ядра. Дефекты обнаруживаются методами рентгенографического или ультразвукового контроля.

Смещение литого ядра или его неправильная форма . Возможные причины: неправильно установлены электроды, не очищена поверхность деталей.

Дефекты обнаруживаются методами рентгенографического или ультразвукового контроля.

Прожог . Причины: наличие зазора в собранных деталях, загрязнение поверхности деталей или электродов, отсутствие или малое усилие сжатия электродов во время токового импульса. Во избежание прожогов ток должен подаваться только после приложения полного усилия сжатия. Определяется внешним осмотром.

Исправление дефектов . Способ исправления дефектов зависит от их характера. Самым простым является повторная точечная или иная сварка. Дефектное место рекомендуется вырезать или высверлить.

При невозможности сварки (из-за нежелательности или недопустимости нагрева детали), вместо дефектной сварной точки можно поставить заклепку, высверлив место сварки. Применяются и другие способы исправления - зачистка поверхности в случае наружных выплесков, термическая обработка для снятия напряжений, правка и проковка при деформации всего изделия.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Точечная сварка применяется для приваривания мелких деталей, например, это могут быть болты, зажимы, заклепки или для соединения нескольких деталей между собой. В основном аппарат для точечной сварки применяется в строении самолетов, поездов, машин и в других направлениях промышленности.

Название такого вида сварки получилось от того, что элементы соединяются между собой не полностью, а только в определенных точках. Эффективность соединения в этих местах в основном зависит от их размера. Прочность самих точек зависит от качества электродов и материала.

Принцип работы аппарата

Способов точечной сварки существует несколько, но принцип их всех заключается в одном. Сварка происходит в результате воздействия электродов на материал. Между электродами проходит ток, и детали под горячим воздействием плавятся.


Сварочная точка получается там, где металлы соприкасаются, зависит она от силы тока. Чем сильней сила тока, тем прочнее будет сварка и тем толще элементы можно соединить.

Материал для сварки можно использовать с толщиной от 0,05 до 0,8 см.

Перед началом работы со сваркой, детали нужно обязательно очистить от всех загрязнений и выбрать подходящий режим, от этого зависит качество в конечном результате работы.

Для проверки качества шва на производстве, разрушают несколько экземпляров. При качественной работе, на одном элементе останется кратер, а на другом ядро сварки. Чтобы легче это понять, посмотрите фото точечной сварки для наглядности.

Если этого не произошло, сварка выполнена не правильно, нужно увеличить время или силу сжатия. Ядро при хорошей работе должно быть в три раза толще более тонкой детали.

Если размер меньше, то элементы проварены не до конца.


Режимы точечной сварки

В продаже имеется много моделей аппаратов для точечной сварки, у каждой есть свои плюсы и минусы. Также каждая модель аппарата предназначена для определенных материалов, в инструкции точечной сварки каждой модели это указано. Но все модели можно разделить на две большие группы.

Подача жесткого тока с большой плотностью, примерное время сварки 0.3-1.6 секунды. Электрод должен быть толще на 0.4 см, чем сам свариваемый элемент.

Подача мягкого тока с небольшой плотностью, примерное время сварки 3-4 секунды. Электроды могут быть такого же размера, как толщина свариваемого элемента.

Режимы воздействия

Выделяют 2 вида воздействия на металлические элементы:

Двухсторонний. Сваркой соединяются сразу с 2 сторон большие детали, открытые соединения. Делается это с применением щипчиков, которые крепко держат деталь. Шов в результате образуется крепким, но при таком воздействии есть ограничение по размеру щипцов.


Односторонний. При таком воздействии нет шанса сварки с обеих сторон. Детали могут быть любого размера, ограничений нет.

Для наибольшего качества и прочности при односторонней сварке используют медную пластинку. Но даже при этом, качество шва будет ниже, чем при первом виде точечной сварки.

Чем хороши аппараты точечной сварки

Точечную сварку своими руками может сделать любой человек, для этого не нужно иметь особых знаний, достаточно прочитать инструкцию по эксплуатации и технику безопасности.

Также к преимуществам можно отнести:

  • Сварка может проводиться с любыми металлами, даже которые быстро плавятся.
  • Шов получается красивый, аккуратный, прочный, качественный в результате.
  • Процесс автоматизирован, поэтому высокая производительность.
  • Минимальные затраты на электроды и другие нужные аксессуары.

Аксессуары

Приобрести аппарат для сварки мало, чтобы с ним работать, необходимо купить дополнительные элементы (иногда они идут в наборе).

  • Электроды и консоли, не совсем такие, как у обычной сварки.
  • Клещи и пистолет для сварки, нужны при работе с мелкими элементами или в узких местах, куда трудно добраться.
  • Редактирование вмятин.


Для приобретения аппарата точечной сварки нужно знать, где будет проводиться работа и с какими металлами. Этого достаточно, чтобы купить нужную модель сварочного аппарата.

Если вы не уверены в своих силах, то не нужно самому приступать к сварке, лучше обратиться к специалисту.

Фото точечной сварки

Аппарат точечной сварки позволяет производить соединение материалов различной толщины, даже очень тонких. Получаемый при этом шов аккуратен, прочен, а его качество мало зависит от профессионализма исполнителя.

1 Точечная сварка – технология быстрого соединения материалов

Точечная сварка представляет собой разновидность контактного способа сваривания. Эта технология обеспечивает соединение деталей в одной или нескольких точках, в которых происходит нагревание материала до температуры плавления пропускаемым током с одновременным приложением сжимающего усилия. После прекращения подачи сварочного напряжения и остывания зоны разогрева снимают воздействие сжатием на место соединения.

В основе технологии контактной сварки лежит тепловое воздействие на металл протекающего по нему электрического тока. Количество выделяемого при этом тепла определяется по закону Джоуля-Ленца и зависит от электрической проводимости материала (чем она меньше, тем больше нагрев). При точечном соединении напряжение подается по двум электродам, между которыми находятся свариваемые детали. Электроды изготавливают из материалов с высокой электропроводимостью, чтобы обеспечить наименьшее сопротивление в месте их контакта с соединяемыми изделиями.

В то же время, область соприкосновения деталей обладает низкой электрической проводимостью (большим сопротивлением). Поэтому проходящий через электроды и детали ток производит быстрый высокотемпературный нагрев именно места соединения изделий. Плавление материала в этой области приводит к образованию литых ядер сварочных точек. Их диаметр обычно варьируется в пределах 4–12 мм. Прочность соединения зависит как от размеров, так и структуры этих точек, определяемых силой и временем протекания сварочного тока, свойствами электродов и поверхностей деталей, усилием сжатия.

2 Особенности работы аппаратов точечной сварки

В зависимости от условий соединения деталей и мощности аппарата процесс точечной сварки характеризуется:

  • малым временем протекания – от 0,01 до нескольких секунд;
  • низким напряжением, подаваемым в сварочную цепь – обычно 2–3 В, может быть 1–10 В;
  • большими величинами сварочного тока – как правило от 1000 А и более;
  • значительным сжимающим усилием, приложенным к месту сварки - от десятков до сотен килограмм;
  • малой зоной расплавления.

Различают два режима сварки:

  • мягкий;
  • жесткий.

Первый характеризуется плавным нагревом изделий при большей, чем во время жесткого режима, продолжительности сварки и меньших значениях протекающего тока. Длительность подачи сварочного импульса обычно составляет 0,5–3 секунды. Этот режим применяют для деталей из стальных сплавов, склонных к закалке. Помимо этого, в основном именно его используют для соединения изделий в домашних условиях, потому что в этом случае сварочный аппарат точечной сварки может иметь мощность более низкую, чем при жестком режиме. Преимущества мягких процессов по сравнению с жесткими:

  • меньшие мощность потребления и нагрузка на сеть;
  • менее мощные, а благодаря этому и более дешевые аппараты, необходимые для соединения изделий;
  • уменьшение закалки области сварки.

Жесткий режим по сравнению с мягким характеризуется меньшей продолжительностью (обычно 0,08–1,5 с), более высокими величинами силы тока и сжимающего усилия электродов. В основном его используют для сварки сплавов из меди, алюминия и с высокой теплопроводностью, (позволяет сохранить их коррозионную устойчивость), а также деталей из разнородных материалов и неравной толщины. Преимуществами жестких режимов являются уменьшение времени и повышение производительности сварки. К недостаткам относят:

  • повышенную потребляемую мощность;
  • высокие нагрузки на сеть;
  • сварочные машины большой мощности.

Точечная сварка получила наибольшее применение для соединения внахлест, причем обычно листовых материалов, реже используется при работах с стержневыми деталями.

Диапазон толщин изделий, свариваемых ею, варьируется от 0,02 мкм для тончайших деталей электронных приборов до 20 мм у листов металлоконструкций в судо-, автомобиле-, самолето-, машиностроении и иных промышленных отраслях. Ее преимуществами являются:

  • высокая экономичность;
  • отсутствие необходимости в расходных материалах (присадочных, электродах, флюсах и прочих);
  • механическая прочность и надежность точечных швов;
  • простота и удобство эксплуатации сварочного оборудования;
  • минимальные остаточные деформации;
  • аккуратность соединения;
  • высокая производительность и возможность автоматизации работ (машина точечной сварки в составе автоматизированной линии способна выполнять до 600 точечных швов в минуту).

Существенный недостаток – невозможность получения герметичного сварочного шва.

3 Виды оборудования для проведения точечной сварки

Существующие аппараты в основном различаются родом подаваемого сварочного тока и формой его импульса, производимых их электрическими силовыми контурами. Исходя из этих параметров все оборудование подразделяют на нижеследующие виды:

  • аппараты для сваривания переменным током;
  • машины низкочастотной сварки;
  • устройства конденсаторного типа;
  • аппараты для сваривания постоянным током.

Всем типам оборудования свойственны свои преимущества и некоторые недостатки в техническом, технологическом и экономическом аспектах.

Аппарат точечной сварки переменным током получил наибольшее распространение. С помощью этих машин сварка осуществляется при рабочем напряжении, которое формируется из питающего напряжения электросети (220/380В) посредством сварочного трансформатора. Первичная обмотка трансформатора подключается к сети с помощью тиристорного модуля, который также обеспечивает длительность подачи электропитания, необходимую для формирования нужного сварочного импульса. Модуль позволяет не только задавать продолжительность времени работы сварки, но и управлять формой подаваемого токового импульса за счет регулирования процесса открытия тиристоров.

Вторичная обмотка, которая через электроды подсоединяется к деталям, может быть составной, выполненной из нескольких обмоток. Производя их подключение друг с другом в различном сочетании, можно изменять коэффициент трансформации, тем самым получая на рабочем выходе аппарата разные значения сварочного тока и напряжения. Помимо тиристорного модуля и силового трансформатора оборудование для точечного сваривания переменным током оснащено комплектом вспомогательных устройств – панель управления, источник питания схемы управления, логические контроллеры, реле и прочее.

Машины низкочастотной сварки и постоянным током по конструкции и принципу работы аналогичны аппаратам переменного тока. Устройства для сваривания постоянным током оснащены преобразователем переменного напряжения в постоянное.

4 Устройства точечной сварки конденсаторного типа

В устройствах конденсаторного типа электрическая энергия сначала относительно медленно аккумулируется в конденсаторе, когда осуществляется процесс его зарядки, после чего происходит очень быстрое ее расходование, сопровождающееся генерированием сварочного импульса с силой тока большой величины. Такой принцип работы позволяет проводить сварку, потребляя меньшую, чем при использовании обычных аппаратов, сетевую мощность. Это является основным преимуществом данного вида оборудования.

У конденсаторной сварки есть и другие достоинства:

  • Расход энергии на каждое сварное соединение контролируется и постоянен (всегда равен величине, накопленной в конденсаторе), что обеспечивает стабильное качество результата.
  • Сварка производится за очень малый промежуток времени (тысячные или сотые доли секунды) – обеспечивается концентрированное тепловыделение и минимизируется область термического воздействия. Это позволяет применять конденсаторную сварку для соединения металлов с высокой тепло- и электропроводностью (серебра, алюминиевых и , других), а также материалов, у которых теплофизические свойства резко отличаются.

Жесткая конденсаторная точечная микросварка применяется в радиоэлектронной промышленности.

5 Самодельная точечная сварка – основные принципы конструирования

При сборке простейших устройств контактной сварки, предназначенных для домашнего использования, нет острой необходимости производить точные расчеты всех параметров. Примерные значения сварочного тока, диаметра электродов, усилия сжатия и времени сварки можно взять из соответствующих таблиц. При этом следует понимать, что табличные данные являются немного завышенными (иногда заниженными, если речь идет о времени сварки) относительно тех, которые вполне подойдут для самодельных аппаратов, так как в домашних условиях наиболее востребованы мягкие режимы работы.

Прекрасная самодельная точечная сварка может получиться из микроволновки, инвертора, старенького ЛАТР. Во всех этих устройствах стоят мощные трансформаторы – основа собираемого оборудования. Переделки потребует вторичная обмотка, а первичная будет использоваться в качестве сетевой. Электроды должны быть из меди, диаметром в 2–3 раза больше толщины более тонкой свариваемой детали. Для соединения всех элементов аппарата необходимо использовать толстый многожильный медный провод в изоляции. Независимо от выбранной схемы устройства точечной сварки удобнее всего выключатель для него выполнить в виде педали. Провода, подводимые от реконструированного трансформатора к электродам, делают как можно более короткими.