Энергетический обмен и общий путь катаболизма. Биохимические пути приспособляемости организма к условиям геохимической среды Окислительное фосфорилирование АТФ

Углеводы, белки и жиры в организме гидролизуются, а образующиеся при этом продукты гидролиза – моносахариды, аминокислоты, жирные кислоты и глицерин подвергаются превращениям, в ходе которых часть из них окисляется до углекислого газа и воды, являющимися продуктами окисления углерода и водорода. Если бы система, в которой каждый из продуктов гидролиза биополимеров, представляющий собой субстрат для последующего окисления, имел бы свой метаболический путь, то такая система была бы очень громоздкой и ненадежной. Однако, Природа решила задачу унификации метаболических путей, организовав катаболические процессы таким образом, что на промежуточных этапах этих процессов образуется минимальное число одних и тех же метаболитов, которые получаются при окислении разных веществ. И, действительно, как видно из схемы, большинство субстратов окисления превращаются в пировиноградную кислоту – пируват (С 3), а затем в ацетил-КоА (С 2), причем последний может образовываться и при окислении пирувата. Ацетил-КоА полностью окисляется в цикле трикарбоновых кислот (ЦТК – он же цикл Кребса или цитратный цикл). Цикл Кребса является общим путем катаболизма для углеводов, белков и жиров. Энергия, выделяющаяся в ходе катаболических реакций, частично рассеивается виде теплоты, большая же ее часть расходуется в анаболических реакциях. Передача энергии осуществляется с помощью интермедиаторов, основной из них – АТФ. Эндергонические процессы – это синтез аденозинтрифосфата (АТФ) из аденозиндифосфата (АДФ) и неорганического фосфата, а также синтез и других веществ с макроэргическими связями. Этот процесс протекает благодаря сопряжению энергии с катаболическими реакциями. Экзергонический процесс – это гидролиз АТФ, а также других трифосфатов. Гидролиз поставляет необходимую энергию для биосинтеза.

Ниже приведена схема сопряжения анаболических и катаболических процессов:

S 1 окисленный субстрат, ΔG < 0

АДФ + фосфат АТФ + Н 2 О, ΔG < 0



Сопряжение

АТФ + Н 2 О → АДФ + фосфат, ΔG < 0

S 2 продукт биосинтеза, ΔG > 0

Большая часть АТФ в организме образуется в результате окислительного фосфорилирования , которое происходит в цепи передачи электронов (ЦПЭ). Основными субстратами этого процесса являются НАД*Н и ФАД*Н 2 , образующиеся преимущественно в ЦТК, поэтому одной из основных задач катаболизма является синтез АТФ – своеобразного аккумулятора энергии, необходимого для последующих реакций анаболизма. Большинство биосинтезов носят восстановительный характер, так как продукты биосинтеза являются менее окисленными по сравнению с исходными веществами. Роль восстановителя в таких процессах играет НАД*Н. Таким образом, ключевая роль в метаболизме принадлежит ограниченному числу соединений. Это пируват и ацетил-КоА, вещества которыми заканчиваются специфические пути катаболизма; АТФ, продукты гидролиза, к которым поступает энергия для анаболических процессов; НАД*Н и ФАД*Н 2 – коферменты, при окислении которых образуется основная часть АТФ в организме.

Катаболизм углеводов

Процессы обмена углеводов у человека начинаются в ротовой полости, так как в состав слюны входит фермент амилаза, который способен расщеплять крахмал и гликоген до дисахарида – мальтозы, которая ферментом мальтазой расщепляет последнюю до глюкозы. Поступление глюкозы в клетки различных органов зависит от гормона инсулина, который регулирует скорость переноса глюкозы через мембраны клеток. переносчиками – белками.

Обмен глюкозы в клетке начинается с ее фосфорилирования:

Глюкоза + АТФ глюкозо-6-фосфат + АДФ

АТФ → + АДФ

В отличие от свободной глюкозы, глюклзо-6-фосфат не способен проходить через клеточные мембраны, поэтому фосфорилированная глюкоза как бы «запирается» в клетке, и там запасается в форме гликогена – животного крахмала, который синтезируется из молекул глюкозо-6-фосфата.

Катаболизм глюкозы в клетке может идти по трем основным направлениям, которые различаются по способу изменения углеродного скелета молекулы:

1. Дихотомический путь, при котором происходит расщепление связи С-С между третьим и четвертым атомами углерода, и из одной молекулы гексозы получаются две триозы (С 6 →2С 3).

2. Апотомический путь (пентозофосфатный), при котором гексоза превращается в пентозу (С 6 → С 5) в результате окисления и отщепления одного (первого) углеродного атома.

3.Глюкуроновый путь, когда происходит окисление и отщепление шестого углеродного атома

Главным путем распада глюкозы, ведущим к высвобождению энергии является дихотомический путь, а в этом пути, в свою очередь, окислить глюкозу и получить ее энергию можно двумя способами:

1.Независимый анаэробный распад глюкозы до молочной кислоты – гликолиз.

глюкоза →2-лактат + 134 кДж

Часть этой энергии расходуется на образование двух молекул АТФ, а остальная рассеивается в виде теплоты.

2.Аэробный (кислородзависимый) распад глюкозы до углекислого газа и воды

Это процесс обратный фотосинтезу:

С 6 Н 12 О 6 + 6О 2 ↔ 6СО 2 + 6Н 2 О + 2850 кДж

60% этой энергии запасается в виде макроэргических связей АТФ, то есть в биологически доступной форме. Как видно из приведенных уравнений, аэробный путь, несомненно, более выгоден по сравнению с гликолизом, так как в нем из одинакового количества глюкозы образуется в двадцать раз больше АТФ. Аэробный распад осуществляется большинством тканей организма за исключением эритроцитов. Для злокачественных клеток основной путь получения энергии – гликолиз. Мышцы используют гликолиз в случае больших нагрузок, когда затруднен доступ кислорода и тогда в натруженных мышцах образуется молочная кислота.

Цепь реакции гликолиза глюкозы включает в себя одиннадцать реакций, из которых первые десять - общие с аэробным распадом, а одиннадцатая – это синтез молочной кислоты из пировиноградной кислоты (ПВК) с помощью НАД*Н. Рассмотрим последовательно реакции при аэробном распаде глюкозы:

1 реакция – это фосфорилирование глюкозы, ее активация.

2 реакция – это изомеризация, глюкозо-6-фосфат превращается в фруктозо-6-фосфат.

3 реакция - фруктозо-6-фосфат фосфорилируется до фруктозо-1,6-дифосфата.

Первые три реакции представляют собой так называемую подготовительную стадию, на этом этапе еще идет затрата энергии АТФ на реакции фосфорилирования:

1

Глюкозо-6-фосфат

2- изомеризация

АТФ
фруктозо-6-фосфат 7 9 3-фосфоглицерат 10

2-фосфоглицерат общий путь

9 Н 2 О АТФ

Следующий этап – это реакции гликолетической оксиредуктации , в которых идет распад шестиуглеродного скелета на два трехуглеродных и окисление их до пирувата.

4 реакция - фруктозо-1,6-дифосфат в своей открытой ациклической форме распадается с помощью фермента альдолазы на два трехуглеродных фрагмента: глицеральдегидфосфат и диоксиацетонфосфат.

5 реакция - изомеризация, превращение диоксиацетонфосфата в глицеральдегидфосфат.

Дальнейший катаболизм происходит только через глицеральдегидфосфат, две молекулы которого в 6-ой реакции окисляются НАД + в 1,3-дифосфоглицерат, а выделяющаяся при этом энергия запасается в виде АТФ. В данном случае окисление альдегида приводит к ангидриду органической и фосфорной кислоты. Две молекулы 1,3-дифосфоглицерата превращаются в процессе гидролиза в 3-фосфоглицерат, а далее, в 8-ой реакции происходит перенос фосфатной группы из положения 3 в положение 2.

9 реакция- отщепление воды с получением фосфоенолпирувата, а затем происходит кето-енольное превращение, сопряженное с гидролизом, когда от диоксиацетонфосфата отщепляется одна молекула фосфорной кислоты и енольная форма превращается в кетоформу.

КАТАБОЛИЗМ ЛИПИДОВ

У высших животных и человека липиды поступают в желудок, и выходят из него почти не затронутые кислой средой. В щелочной среде тонкого кишечника липиды гидролизуются под действием липаз. Гидролизованные липиды всасываются в кровь и переносятся в различные органы для дальнейшего метаболизма.

В кровь поступают сквозь стенку кишечника глицерин, ЖК, моно- и диглицериды. В крови ЖК снова этерифицируются глицерином, который связан с белками крови и переносится в жировую ткань или печень, где откладывается. В печени идёт гидролиз с образованием ЖК, которые окисляются до СО 2 и Н 2 О. При окислении высвобождается большое количество энергии.

Процесс окисления ЖК включает много стадий. ЖК разрушается (синтезируется) до фрагментов С-С (природные ЖК состоят из чётного числа атомов углерода). При катаболизме, ЖК сначала превращаются в тиоэфиры с коферментом А, с выделением АТФ, затем окисляются в ненасыщенные кислоты, окислителем служит ФАД.

С 15 Н 31 СООН – пальмитиновая кислота

О HSКоА О ФАД

СН 3 (СН 2) 12 СН 2 СН 2 С ОН СН 3 (СН 2) 2 СН 2 СН 2 С SКоА

СН 2 (СН 2) 12 СН=СНС SКоА

Начинается путь катаболизма белков с гидролиза (протеолиза) под действием ферментов протеазы и пептидазы.

Гидролиз белков начинается в желудке под действием фермента пепсина, этому способствует кислая среда желудочного сока рН=1-2 возникает благодаря выделению желудочных клеток соляной кислоты.

В тонком кишечнике при рН=7,8-8,4 , распад белков катализируется ферментами поджелудочной железы трипсином и химитрипсином.

АК – продукт гидролиза белков, поступающие из ЖКТ, являются важным фондом пополнения аминокислотного запаса клеток и тканей. Ограниченное поступление из вне даже одной из незаменимых АК вызывает резкий распад собственных белков тканей, АК используются в синтезе собственных белков, нуклеотидов, порфиринов и т. д.

В сутки взрослому человеку необходимо 100 г белка. Белки могут быть полноценными – в наличии все незаменимые АК и неполноценными – в наличии не все незаменимые АК. За сутки распадается и синтезируется 400 г белка. За 35 дней обновляются все белки.

О состоянии белкового обмена можно судить по азотистому балансу. Поскольку белки органов отличаются строгой видовой и тканевой специфичностью, живой организм обладает способностью использовать вводимый белок только в гидролизованном состоянии.

Всасывание АК через мембрану тонкого кишечника происходит под действием глутатиона. АК поступают в кровь воротной вены, затем в печень, где подвергаются ряду превращений.

Этот путь катаболизма широко представлен в различных тканях человека и животных (печень, надпочечники, лимфотические узлы, эритроциты, жировая ткань и др.).

Ключевым ферментом апотомического пути является глюкозо-6-фосфатдегидрогеназа, впервые обнаруженная О.Варбургом в эритроцитах.

В этом пути катаболизма образуются различные фосфопентозы как промежуточные метаболиты и поэтому его называют пентозофосфатным циклом.

Путь прямого окисления глюкозо-6-монофосфата в основном протекает в цитозоле без участия кислорода:

6(глюкозо-6-фосфат)+12НАДФ+7НОН

5(глюкозо-6-фосфат)+6СО2+12НАДФН2+Н3РО4

В аэробных условиях процесс продолжается с участием ферментов дыхательной цепи митохондрий:

12 НАДФН2 + 6 (О2) 12 НАДФ + 12 НОН + ΔG(36АТФ)

Биологическая роль пентозного цикла состоит в следующем :

1. В этом пути при окислении одной молекулы глюкозо-6-фосфата образуется 12 НАДФН2, которые используются клетками для синтеза жирных кислот, стероидных гормонов, для обезвреживания ядов и др.

2. В этом процессе синтезируются различные пентозы, в том числе рибоза, необходимая для построения молекул нуклеотидов и нуклеиновых кислот.

3. В аэробных условиях, при переносе протонов и электронов с цитозольных 12 молекул НАДФН2 в митохондрии на ферменты дыхательной цепи, возможен синтез 36 молекул АТФ в реакциях окислительного фосфорилирования.

Пентозофосфатный путь катаболизма углеводов активен прежде всего, в тех органах и тканях, в который требуется интенсивное использование НАДФН2 в реакциях восстановительных синтезов, использование рибозо-5-фосфата для синтеза нуклеотидов и нуклеиновых кислот.

Поэтому высока активность этого пути в жировой ткани, печени, надпочечниках, половых железах, костном мозге, лимфоидной ткани и молочных железах.

Относительно активен этот путь в эритроцитах и мало активен в мышечной ткани.

Особое значение имеет пентозный цикл в растительных клетках, где основные реакции фотосинтеза по их механизму и фазности напоминают гексозомонофосфатный путь


Карнитиновый челночный механизм транспорта жирных кислот в митохондрии

В митохондриях за перенос жирных кислот отвечает специальная транспортная система. Активированные жирные кислоты в форме ацил-КоА становятся транспортабельными в цитоплазме после взаимодействия с карнитином . Образовавшийся ацилкарнитин транспортируется в матриксе карнитиновым переносчиком, обмениваясь на свободный карнитин. В матриксе ацильные остатки вновь связываются с КоА.\

Билет

  1. Структурная организация живого, свойства живых систем.

Биохимические принципы, подходы и методы позволили в определенной мере расшифровать основные закономерности функциональной организации биосистем. Благодаря биохимии стали объяснимы такие свойства живых систем как:

· сложность структурной организации;

· питание и обмен веществ;

· дыхание;

· наследственность и изменчивость;

· многообразие форм и видов;

· рост и развитие;

· способность извлекать и преобразовывать энергию;

· способность к сохранению структурно-функциональной целостности организма;

· активное, незавизимое передвижение в пространстве;

· самовоспроизводство себе подобных;

· приспособляемость;

· раздражимость.

Все свойства живых систем имеют материальную основу, которая определяется, формируется и функционирует благодаря структурной организации химических соединений в клетку.


ОРГАНЕЛЛЫ:

белки....аминокислоты

НК....нуклеотиды

липиды.....жирные к-ты и глицирин

полисахариды.....моносахариды

  1. Структурная организация и функции хромосом и рибосом.

Вся информация о человеке хранится в хромасомах. Хромосомы по своей химической природе являются нуклеопротеодами. Нуклеопротеиды состоят из белковой части (гистоны, протамины) и простетической группы (НК).Высокополимерные ДНК в комплексе с молекулами белков и составляют хромасому. Молекула ДНК за счет остатков фосфорной кислоты заряжается отрицательно и присоединяет к своей поверхности положительно заряженные белки, образую сложный белок дезоксирибонуклеопротеид называемый хроматином. Спираль ДНК соединяется с группами из 8 молекул гистона и образует нуклеосомы - частицы, имеющие вид нанизанных на нитку бусинок. Эти нуклеосом и соединяющие их участки ДНК плотно упакованы в виде спирали толщиной в 36 нм. На каждый виток спирали приходится примерно 6 нуклеосом, которые по своим размерам и другим признакам соответствуют хромомере хромосом. Все хромосомы состоят из двух хромомер и соеденены друг с другом центральными двумя нитями ДНК.

Функции хромосом заключается:

В хранении наследственной информации. Хромосомы являются носителями генетической информации.
- В передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК.
- В реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и соответственно того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

Сформулированы основные принципы структурной организации рибосомы: 1) рибосома построена из двух неравных субчастиц; 2) высокополимерная РНК каждой рибосомной субчастицы компактно свернута специфическим образом, формируя структурное ядро рибосомной субчастицы; 3) разнообразные рибосомные белки собраны на ядре РНК как на каркасе, так что каждый белок узнает свою посадочную площадку.

Рибосомы представляют собой субклеточные частицы с козффициенто седиментации 80S и молекулярной массой 4,5 млн. Они состоят из двух субъединиц - большой (60S) и малой (40S). Каждая из субъединиц содержит РНК и белки.

Функции рибосом: синтез белков.

  1. Характеристика ферментов класса трансфераз.

2 класс ферментов - трансферазы. Ферменты этого класса катализируют перенос функциональных групп и делятся по этому принципу на 8 подклассов:

  • переносит одноуглеродные остатки (метил-, метелин-)
  • переносят альдегидные или кетоновые группы
  • переносят ацильные (кислотные) остатки
  • переносят гликозильные остатки
  • переносят алкильные или арильные группы
  • переносят азотсодержащие группы (амино-, амидино-)
  • переносят фофорсодержащие группы
  • переносят серосодержащие группы (тиогруппы)
  1. Строение, пищевые источники и биологические функции витамина РР.

Витамин PP существует в двух формах - никотиновой кислоты и никотиномида.

Источники

Говяжья печень, дрожжи, брокколи, морковь, сыр, кукурузная мука, листья одуванчика, финики, яйца, рыба, молоко, арахис, свинина, картофель, помидоры, проростки пшеницы, продукты из цельных злаков.

Травы, богатые витамином PP: люцерна, корень лопуха, котовник кошачий, кайенский перец, ромашка, песчанка, очанка, семя фенхеля, пажитник сенной, женьшень, хмель, хвощ, коровяк, крапива, овес, петрушка, мята перечная, листья малины, красный клевер, плоды шиповника, шалфей, щавель.

Действие

Активное воздействие витамина PP на обменные процессы обусловлено его вхождением в состав ниацинамидадениндинуклеотида (НАД) и ниацинамидадениндинуклеотида фосфата (НАДФ), являющихся кофакторами ряда ферментов. В частности, ниацинамид входит в состав кодегидраз, являющихся переносчиками водорода к флавопротеиновым ферментам, и тем самым регулирует окислительно-восстановительные процессы в организме.

  1. Окислительное фосфорилирование, коэффициент Р/0 и АДФ/0

ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ, синтез АТФ из аденозиндифосфата и неорг. фосфата, осуществляющийся в живых клетках, благодаря энергии, выделяющейся при окислении орг. в-в в процессе клеточного дыхания. В общем виде окислительное фосфорилирование и его место в обмене в-в можно представить схемой:

Энергия окисляющихся веществ используется для синетза АТФ из АДФ. В молекуле АТФ имеютсядве высокоэнергетические (макроэргические) связи:

В молекуле АДФ только одна высокоэнергетическая связь, в результате синтеза АТФ путем окислительного фосфорилирования добавляется еще одна, т.е. Энергия окисления субстрата трансформируется в энергию химических связей в молекуле АТФ. Т.е. Главный путь синтеза АТФ из АДФ - окислительное фосфорилирование, при этом Адф фосфорилируется неорганическим фосфатом:

АДФ + Н3 РО4 + энергия --- АТФ + Н2 О

Синтез АТФ осуществляется на уроне трех участков дыхательной цепи митохондрий, где имеется достаточной величины разность редокс-потенциалов. Первый участок м/у НАД и ФМН (0,21в), второй - м/у b и c (0,22в), третий м/у цитохромоксидазой(а+а3) и кислородом (0,29в).

Для качественной оценки был введен покзатель окислительного фосфолирирования- коэффициент Р/0 - отношение количества молекул фосфорной кислоты к количеству атомов кислорода использованных митоондриями при окислении какого-либо субстрата.

Другим показателем, характеризующим активность митохондрий в 3-м состоянии, является коэффициент АДФ/О. Величина АДФ/О характеризует функциональную организацию механизмов, определяющих процесс фосфорилирования АДФ в митохондриальной мембране и связь их с активностью терминальной дыхательной цепи.

Чем больше величина АДФ/О, тем меньше затрачивается кислорода на фосфорилирование, тем соответственно выше коэффициент полезного действия митохондрий с точки зрения запасания энергии для дальнейших внутриклеточных метаболических процессов.

  1. Биосинтез гликогена. Биологичечкая роль этого процесса.

Значительная часть глюкозы, поступающей в клетки при пищеварении, превращается в гликоген - запасной полисахарид, используемый в интервалах м/у приемами пищи. Синтез осуществляется во всех клетках организма,но особенно активно потекает в скелетных мышцах и печени.

Ключевым ферментом синтеза гикогена является активная форма - гликогенсинтетаза «а», которая цАМФ зависимой протеинкиназой переводит ее в неактивную форму - гликогенсинтетазу «b».

Гликоген по строению сходен с крахмалом. Непосредственным донором глюкозных остатков при биосинтезе гликогена служит УДФ-глюкоза, которая образуется из УТФ и глюкозо-1-фосфата под воздействием фермента глюкозо-1-фосфат-уридил-трансферазы: глюкозо-у-фосфат + УТФ -УДФ-глюкоза + Н3РО4

Под воздействием гликогенсинтетазы (1,4-гликозилтрансферазы) происходит перенос остатков глюкозы с УДФ-глюкозы на олигосахаридный фермент (гликоген-затравка). Врезультате синтезируется линейная цепь гликогена, остатки глюкозы соеденены друг с другом 1-4 альфа-гликозидной связью:

УДФ-глюкоза + n(глюкоза)--- УДФ + 1,4-гликоген

Ветвления в молекуле гликогена возникают в результате действия фермента ветвления - амило-1,4-->1,6 гликозилтрансферазы, который переносит фрагмент (олигосахарид) из 5-7 мономеров от 1,4-гликогена и присоединяет его к центру оставшейся линейной цепи гликогена 1,6- гликозидной связью:

(1,4)-гликоген ----- 1,4-1,6-гликоген

РОЛЬ: необходимость превращения глюкозы в гликоген при запасании энергетического материала обусловлена тем, что накопление легкорастворимой глюкозы в клетках могло бы привести к осмотическому шоку- разрушению клеточной мембраны.

  1. Механизм резервирования и мобилизации жиров.

Главными резервными липидами явл. триацилглицириды, депонируемые в липоцитах жировой ткани. Резервирование липидов в ировой ткани идет за счет использования жирных кислот, освобождаемх при разрушении хиломикронов, или доставляемых альбуминами плазмы крови из других тканей. Поскольку в жировой ткани очень низка активность фосфоглицираткиназы, фермента активируещего глицирин, то фактически использование глицирина для синтеза липидов становиься невозможным. Вследствие этого, избыточное употребление в пищу углеводов может ускорить синтез жиров в жировой ткани. Следовательно одной из ричин избыточного отложения жира в жировых депо является не ирная пища, а углеводы.

Резервированию жиров в жировых депо способствует гормон поджелудочной железы инсулин. При снижении уроня глюкозы в крови резервирование прекращается и включается процесс мобилизации. Мобилизация наблюдается при длительных физичеких нагрузках, адаптации к холоду, стресс. Мобилизация запускается активацией адреналином гормон чувствительной триацилглицеринлипазы.тот фермент находится в клетках жировой ткани в неактивном виде и активируется через аденилатциклазный каскадный механизм. Пусковым фактором явл.выброс адреналина, который связывается с адренорецепторами активирует аденилатциклазу, фермент синтезиующий 3"5"АМФ изАТФ.

Билет

  1. Важнейшие этапы истории биохимии. Разделы биохимии.

Биологическая химия (биохимия) - наука, предметом изучения которой являются химический (молекулярный) состав живых организмов и химические (биохимические) реакции, которые происходят в этих организмах и лежащих в основе их жизнедеятельности, то есть выполнение разнообразных физиологических функций. Раздел, изучающий химический состав живых организмов и свойства химических соединений, выделенных из живых тканей, называетсястатической биохимией .

Все многообразие химических реакций в организме, их взаимосвязь и регуляция, а также сопряженные с ними превращения энергии в процессах жизнедеятельности изучаются динамической биохимией .

Биохимические процессы, лежащие в основе жизнедеятельности отдельных тканей и органов и проявления их специфической функции, рассматриваются различными разделами функциональной биохимии .

  1. Строение и функции генетического кода: код, кадон и антикадон.

Генети́ческий код - свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

В ДНК используется четыре азотистых основания - аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом - урацилом, который обозначается буквой U(У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Антикодон - участок молекулы транспортной РНК, состоящий из трех нуклеотидов, комплементарно связывающийся с кодоном информационной РНК, что обеспечивает правильную расстановку каждой аминокислоты при биосинтезе белка.


Кодон - дискретная единица генетического кода, состоящая из трех последовательных нуклеотидов, в молекуле ДНК или РНК.


^ 20.биохимические основы качества силы и пути его развития

Под силой мышц обычно понимается способность преодолевать внешнее сопротивление, либо противодействовать ему посредством мышечных напряжений.

Скоростно-силовые качества главным образом зависят от энергообеспечения работающих мышц и от их структурно-морфологических особенностей, в значительной мере предопределенных генетически.

Проявление силы и быстроты характерно для физических нагрузок, выполняемых в зоне максимальной и субмаксимальной мощности. Следовательно, в энергообеспечении скоростно-силовых качеств преимущественно участвуют анаэробные пути ресинтеза АТФ – креатин-фосфатный и гликолитический.

Быстрее всего развертывается ресинтез АТФ за счет креатинфосфатной реакции. Она достигает своего максимума уже через 1–2 с после начала работы. Максимальная мощность этого способа образования АТФ превышает скорость гликолитического и аэробного путей синтеза АТФ в 1,5 и 3 раза соответственно. Именно за счет креатинфосфатного пути ресинтеза АТФ мышечные нагрузки выполняются с самой большой силой и скоростью. В свою очередь, величина максимальной скорости креатинфосфатной реакции зависит от содержания в мышечных клетках креатинфосфата и активности фермента креатинкиназы. Увеличить запасы креатинфосфата и активность креатинкиназы возможно за счет использования физических упражнений, приводящих к быстрому исчерпанию в мышцах креатинфосфата.

Для этой цели используются кратковременные упражнения, выполняемые с предельной мощностью. Хороший эффект дает применение интервального метода тренировки, состоящей из серий таких упражнений. Спортсмену предлагается серия из 4–5 упражнений максимальной мощности продолжительностью 8–10 с. Отдых между упражнениями в каждой серии равен 20–30 с. Продолжительность отдыха между сериями составляет 5–6 мин.

Выполнение скоростных и силовых нагрузок в зоне субмаксимальной мощности обеспечивается энергией в основном за счет гликолитического ресинтеза АТФ. Возможности этого способа получения АТФ обусловлены внутримышечными запасами гликогена, активностью ферментов, участвующих в этом процессе, и резистентностью организма к молочной кислоте, образующейся из гликогена. Поэтому для развития скоростно-силовых способностей, базирующихся на гликолитическом энергообеспечении, применяются тренировки, отвечающие следующим требованиям. Во-первых, тренировка должна приводить к резкому снижению содержания гликогена в мышцах с последующей его суперкомпенсацией. Во-вторых, во время тренировки в мышцах и в крови должна накапливаться молочная кислота для последующего развития резистентности к ней организма.

Промежутки отдыха как между отдельными упражнениями, так и между сериями упражнений явно недостаточны для восстановления запасов гликогена, и вследствие этого в ходе тренировки в мышцах происходит постепенное уменьшение содержания гликогена до очень низких величин, что является обязательным условием возникновения выраженной суперкомпенсации.

Структурно-морфологические особенности мышц, определяющие возможности проявления силы и быстроты, касаются строения как отдельных мышечных волокон, так и мышцы в целом. Скоростно-силовые качества отдельного мышечного волокна зависят от количества сократительных элементов – миофибрилл – и от развития саркоплазматической сети, содержащей ионы кальция. Саркоплазматическая сеть также участвует в проведении нервного импульса внутри мышечной клетки. Содержание миофибрилл и развитие саркоплазматической сети неодинаково в мышечных волокнах разных типов. В зависимости от преобладания тех или иных способов образования АТФ, химического состава и микроскопического строения выделяют три основных типа мышечных волокон: тонические, фазические и переходные. Эти типы волокон также различаются по своей возбудимости, времени, скорости и силе сокращения, продолжительности функционирования.

Тонические волокна содержат относительно большое количество митохондрий, в них много миоглобина, но мало сократительных элементов – миофибрилл. Основной механизм ресинтеза АТФ в таких мышечных волокнах – аэробный. Поэтому они сокращаются медленно, развивают небольшую мощность, но зато могут сокращаться длительное время.

Фазические волокна имеют много миофибрилл, хорошо развитую саркоплазматическую сеть, к ним подходит много нервных окончаний. В них хорошо развиты коллагеновые волокна, что способствует их быстрому расслаблению. В их саркоплазме значительны концентрации креатинфосфата и гликогена, высока активность креатинкиназы и ферментов гликолиза. Относительное количество митохондрий в белых волокнах значительно меньше, содержание миоглобина в них низкое, поэтому они имеют бледную окраску. Обеспечение энергией белых мышечных волокон осуществляется за счет креатинфосфатной реакции и гликолиза. Сочетание анаэробных путей ресинтеза АТФ с большим количеством миофибрилл позволяет волокнам данного типа развивать высокую скорость и силу сокращения. Однако вследствие быстрого исчерпания запасов креатинфосфата и гликогена время работы этих волокон ограничено.

Переходные мышечные волокна по своему строению и свойствам занимают промежуточное положение между тоническими и фазическими.

Даже из такого краткого перечисления различий между типами мышечных волокон следует, что для проявления силы и быстроты более предпочтительны белые волокна и близкие к ним по строению переходные волокна. Поэтому более выраженными скоростно-силовыми качествами, при прочих равных условиях, обладают те мышцы, в которых соотношение между мышечными волокнами смещено в сторону белых.

Соотношение между волокнами разных типов в скелетных мышцах неодинаковое. Так, мышцы предплечья, двуглавая мышца плеча, мышцы головы и другие содержат преимущественно физические волокна. Мышцы туловища, прямая мышца живота, прямая мышца бедра в основном содержат тонические волокна. Отсюда легко понять, почему указанные группы мышц существенно различаются по таким свойствам, как возбудимость, быстрота, сила, выносливость.

Соотношение между различными типами мышечных клеток у каждого человека генетически предопределено. Однако, используя физические нагрузки определенного характера, можно целенаправленно вызывать изменение спектра мышечных волокон. За счет применения силовых упражнений происходит смещение этого спектра в сторону преобладания белых волокон, имеющих больший диаметр по сравнению с красными и переходными, что в итоге приводит к гипертрофии тренируемых мышц. Основной причиной гипертрофии в этом случае является увеличение содержания в мышечных клетках сократительных элементов – миофибрилл. Поэтому мышечная гипертрофия, вызываемая силовыми нагрузками, относится к миофибриллярному типу.

Физические нагрузки, применяемые для развития мышечной гипертрофии миофибриллярного типа, на биохимическом уровне должны приводить к повреждению миофибрилл с последующей их суперкомпенсацией. С этой целью используются различные упражнения с отягощением.

Для развития силы часто используется метод повторных упражнений с напряжением 80–90% от максимальной силы. Наиболее эффективное отягощение – 85% от максимальной силы. В этом случае число повторений "до отказа" обычно 7–8. Каждое упражнение выполняется сериями, количество которых колеблется от 5 до 10, с интервалом отдыха между ними в несколько минут. Скорость выполнения упражнений определяется целью тренировки. Для преимущественного увеличения мышечной массы упражнения выполняются в медленном или умеренном темпе. Для одновременного развития силы и быстроты упражнения проводятся во взрывчато-плавном режиме: начальная фаза движения выполняется с большой скоростью, а завершается оно как можно более плавно. Поэтому в скоростно-силовых видах спортсмены в период силовой подготовки должны отказаться от медленного выполнения силовых упражнений, так как в этом случае утрачивается способность мышц к быстрому сокращению.

Время восстановления после скоростно-силовой тренировки составляет 2–3 дня. Однако, меняя мышечные группы, на которые направлены нагрузки, тренировочные занятия можно проводить через меньшие интервалы отдыха.

Обязательным условием эффективной силовой подготовки является полноценное, богатое белками питание, так как миофибриллы состоят исключительно из белков. Имеются данные о том, что развитию мышечной гипертрофии способствует ультрафиолетовое облучение. Предполагается, что под воздействием ультрафиолета увеличивается образование мужских половых гормонов, стимулирующих в организме синтез белков.

21 Биохимические основы быстроты (скорости) как качества двигательной деятельности

Быстрота как двигательное качество – это способность человека совершать двигательное действие в минимальный для данных условий отрезок времени с определенной частотой и импульсивностью. В вопросе о природе этого качества среди специалистов нет единства взглядов. Одни высказывают мысль, что физиологической основой быстроты является лабильность нервно-мышечного аппарата. Другие полагают, что важную роль в проявлении быстроты играет подвижность нервных процессов. Многочисленными исследованиями доказано, что быстрота является комплексным двигательным качеством человека.

Основные формы проявления быстроты человека – время двигательной реакции, время максимально быстрого выполнения одиночного движения, время выполнения движения с максимальной частотой, время выполнения целостного двигательного акта. Выделяют также еще одну форму проявления быстроты («скоростных качеств») – быстрое начало движения (то, что в спортивной практике называют «резкостью»). Практически наибольшее значение имеет скорость целостных двигательных актов (бег, плавание и др.), а не элементарные формы проявления быстроты, хотя скорость целостного движения лишь косвенно характеризует быстроту человека.

Скелетная мышца представляет собой сложную систему, преоб химическую энергию в механическую работу и тепло. Основными компонентами мышечного волокна являются белки: актин и миозин.

При совершении быстрых движений для сокращения мышц требуется большое количество энергии в единицу времени при дефиците кислорода, поэтому основную роль при этом играют анаэробные процессы гидролиза АТФ.

Гидролиз АТФ в АТФазном центре головки миозина сопро изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается за в ней энергией. В каждом цикле соединения и разъ головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоро расщепления АТФ. Очевидно, что быстрые фазические во потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъедине головки миозина и актинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 106 моль/л.

Уровень развития быстроты, в конечном итоге, определяет успех в подавляющем большинстве видов спорта. Даже марафонец должен, возможно, быстрее пробежать свою дистанцию, сохраняя высокую «крейсерскую» скорость (под «крейсерской» скоростью подразумевается средняя скорость прохождения дистанции). И успех тяжелоатлета зависит от того, с какой скоростью он сумеет выполнить необходимое движение.

Быстрота определяется:

а) путем измерения скорости движения в ответ на определенный сигнал реакциометрами различной конструкции;

б) по количеству движений за установленное время незагруженной конечностью или туловищем в границах определенной амплитуды;

в) по времени преодоления установленного короткого расстояния (например, бега на 20, 30 м);

г) по скорости выполнения однократного движения в сложном действии,например отталкивания в прыжках, движения плечевого пояса и руки в метаниях, удара в боксе, начального движения бегуна на короткие дистанции, движений гимнаста и др.

Все проявления быстроты эффективно развиваются при игре в баскетбол. Можно также порекомендовать ручной мяч, настольный теннис, подвижные игры с быстро меняющейся игровой ситуацией и быстрым передвижением. Главная задача при воспитании быстроты состоит в том, чтобы спортсмен преждевременно не специализировался в каком-либо одном упражнении скоростного характера, чтобы не включать в большом объеме однотипное повторение этого упражнения. Поэтому столь важно, чтобы спортсмены применяли скоростные упражнения возможно чаще в форме состязания или игры. В программу занятий должны входить в значительном объеме такие скоростные упражнения, как спринтерский бег со старта и с хода, бег с ускорением, прыжки в длину и высоту с предельно быстрым отталкиванием, метание облегченных снарядов, подвижные и спортивные игры, предельно быстро выполняемые акробатические упражнения и разнообразные специальные подготовительные упражнения.

Важное значение для воспитания быстроты и повышения скорости движений имеет правильное определение дозировки скоростных упражнений. Те из них, которые выполняются с максимальной интенсивностью, являются сильно действующим средством, вызывающим быстрое утомление. Это же относится и к упражнениям, направленным на повышение скорости движений. Поэтому упражнения, выполняемые с максимальной скоростью, должны применяться часто, но в относительно небольшом объеме. Длительность интервалов отдыха обусловлена степенью возбудимости центральной нервной системы и восстановлением показателей вегетативных функций, связанных с ликвидацией кислородного дефицита. Тренировочную работу для развития быстроты следует заканчивать, как только субъективные ощущения спортсмена или показания секундомера скажут об уменьшении установленной или максимальной быстроты.

22.биохимические основы качества выносливости к длительным нагрузкам и пути его развития

Выносливость – важнейшее двигательное качество, от уровня развития которого во многом зависят достижения атлета. Выносливость можно определить как время работы с заданной мощностью до появления утомления.

В соответствии с характером выполняемой работы выделяют общую и специальную выносливость. Общая выносливость отражает способность спортсмена выполнять неспецифические нагрузки. Такими нагрузками, например, для футболиста могут быть кросс, лыжные гонки, плавание, подвижные игры и т.п., а также выполнение физической работы бытового характера. Специальная выносливость характеризует выполнение физических нагрузок, специфических для определенного вида спорта и требующих технической, тактической и психологической подготовки спортсмена.

Первостепенное значение для проявления выносливости имеет уровень развития молекулярных механизмов образования АТФ – непосредственного источника энергии для обеспечения мышечного сокращения и расслабления

В зависимости от способа энергообеспечения выполняемой работы выделяют алактатную, лактатную и аэробную выносливость. Нередко используются термины." алактатиый, лактатный и аэробный компоненты выносливости.

Алактатная выносливость характеризуется наибольшим временем работы в зоне максимальной мощности. В зависимости от вида нагрузки можно выделить скоростную, скорости о-силовую и силовую алактатную выносливость. Главным источником энергии при мышечной работе максимальной мощности является креатинфосфатная реакция. Поэтому развитие алактатной выносливости обусловлено внутримышечными запасами креатинфосфата. Как уже отмечалось, более богаты креатинфосфатом белые мышечные волокна. В связи с этим большей алактатной выносливостью обладают мышцы с преобладанием белых волокон. Содержание креатинфосфата в мышцах можно существенно повысить, используя специальные упражнения. Принцип построения такой тренировки в интервальном режиме был описан выше, при рассмотрении энергообеспечения скоростно-силовых качеств.

Биохимическая оценка алактатной выносливости может быть дана путем определения суточного выделения с мочой креатинина. Этот показатель характеризует общие запасы в организме креатинфосфата. Рост алактатной выносливости обычно сопровождается увеличением суточного выделения креатинина. Другим критерием, характеризующим развитие алактатной выносливости, является алактатный кислородный долг, измеренный после завершения работы максимальной мощности.

Лактатная выносливость характеризует выполнение физических нагрузок в зоне субмаксимальной мощности. Основным источником энергии при работе с такой мощностью служит анаэробный распад мышечного гликогена до молочной кислоты, называемый гликолизом. Возможности гликолитического способа получения АТФ в значительной степени зависят от запасов мышечного гликогена. Чем выше дорабочая концентрация гликогена в мышцах, тем дольше он будет использоваться в гликолизе. Отсюда следует, что мышцы с преобладанием белых, богатых креатинфосфатом и гликогеном волокон обладают также и выраженной лактатной выносливостью. Другим фактором, определяющим лактатную выносливость, является резистентность мышечных клеток и всего организма в целом к возрастанию кислотности вследствие накопления лактата в мышцах и в крови.

Исходя из такой зависимости тренировки, направленные на развитие лактатной выносливости, строятся так, чтобы обеспечить выполнение двух задач. Во-первых, за счет выполняемых физических нагрузок в мышцах должно увеличиваться содержание гликогена. Во-вторых, тренировочные занятия должны привести к возникновению резистентности к накоплению лактата и повышению кислотности.

С этой целью применяются упражнения, вызывающие, с одной стороны, значительное исчерпание запасов мышечного гликогена, что является необходимым условием для его последующей суперкомпенсации, а с другой – приводящие к образованию больших количеств молочной кислоты. Таковыми являются физические нагрузки субмаксимальной мощности, выполняемые в интервальном или повторном режиме. Тренировка такого типа описана выше, при рассмотрении энергообеспечения скоростно-силовых качеств. В зависимости от характера применяемых нагрузок можно преимущественно развивать силовой или скоростной компонент лактатной выносливости.

Ведущим биохимическим показателем проявления лактатной выносливости при работе является накопление лактата в крови. Определение концентрации молочной кислоты в крови проводят после выполнения физической работы субмаксимальной мощности "до отказа". Высокий уровень концентрации молочной кислоты в крови свидетельствует об использовании для получения энергии во время работы больших количеств мышечного гликогена и развитии резистентности к возрастанию кислотности.

Такую же информацию можно получить, определяя в крови после субмаксимальных нагрузок изменение кислотно-щелочного баланса. В этом случае высокой лактатной выносливости соответствует значительный сдвиг водородного показателя крови в кислую сторону. Еще одним показателем развития лактатной выносливости может служить лактатный кислородный долг, измеренный после выполнения работы субмаксимальной мощности "до отказа". Чем выше значение этого показателя, тем больше вклад анаэробного распада гликогена в энергообеспечение проделанной работы. У спортсменов с хорошей физической подготовкой величины лактатного кислородного долга могут достигать 18–20 л.

В спортивной практике очень часто алактатную и лактатную выносливость объединяют в анаэробную.

Аэробная выносливость проявляется при выполнении продолжительных упражнений умеренной мощности, которые главным образом обеспечиваются энергией за счет аэробного окисления. Вклад анаэробного энергообразования ограничивается лишь начальным периодом врабатывания. В спортивной литературе зачастую под термином "выносливость" подразумевается именно аэробная выносливость.

Аэробная выносливость определяется тремя главнейшими факторами: запасами в организме доступных источников энергии, доставкой кислорода в работающие мышцы и развитием в работающих мышцах митохондриального окисления.

В качестве источников энергии обычно используются углеводы, жирные кислоты, кетоновые тела и аминокислоты. Вследствие большой продолжительности аэробной работы эти энергетические субстраты доставляются в мышцы кровью, так как собственные энергетические ресурсы мышечных клеток расходуются в начале работы.

В обеспечении мышц источниками энергии существенная роль принадлежит печени. Именно здесь во время выполнения длительных нагрузок происходит распад гликогена до глюкозы, которая затем с током крови поступает в скелетные мышцы и другие органы, участвующие в обеспечении мышечной деятельности. Другой процесс, протекающий в печени во время работы, окисление жирных кислот, сопровождающееся образованием кетоновых тел, которые также являются важными источниками энергии. Кроме того, в печени во время работы протекают и другие химические процессы, способствующие выполнению мышечной работы. В связи с такой важной ролью печени в обеспечении физической работы в спортивной практике применяют гепатопротекторы – фармакологические средства, улучшающие функционирование печени и ускоряющие в ней процессы восстановления.

Доставка кислорода в мышцы осуществляется кардиореспираторной системой. Поэтому для проявления аэробной выносливости исключительно важное значение имеет функциональное состояние сердечнососудистой и дыхательной систем, кислородная емкость крови, обусловленная количеством эритроцитов и содержанием в них гемоглобина.

Развитие аэробной выносливости в значительной мере определяется также состоянием нервно-гормональной регуляции. Ведущую роль в этой регуляции выполняют надпочечники, выделяющие в кровь катехолстины и глюкокортикоиды – гормоны, вызывающие перестройку организма, направленную на создание оптимальных условий для мышечной деятельности. Для проявления аэробной выносливости важна способность надпочечников в течение длительного времени поддерживать в кровяном русле повышенную концентрацию этих гормонов.

Внутримышечными факторами, ответственными за аэробную выносливость, являются размер и количество митохондрий – внутриклеточных структур, в которых при участии кислорода происходит синтез АТФ, а также содержание миоглобина – мышечного белка, обеспечивающего внутри мышечных волокон перенос кислорода к митохондриям. Как уже отмечалось, более высоким содержанием митохондрий и миоглобина характеризуются красные мышечные волокна. Отсюда вытекает, что более высокая аэробная выносливость наблюдается в мышцах с преобладанием красных волокон.

Аэробная выносливость в отличие от анаэробной менее специфична. Это обусловлено тем, что ее в большой мере лимитируют различные внемышечные факторы: функциональное состояние кардиореспираторной системы, печени и нервно-гормональной регуляции, кислородная емкость крови, запасы в организме легкодоступных источников энергии. Поэтому спортсмен, имеющий хороший уровень аэробной выносливости, может проявить ее не только в том виде деятельности, где он прошел специализированную подготовку, но и в других видах аэробной работы. Например, квалифицированный футболист может показать хороший результат в беге на длинные дистанции.

Многофакторность аэробной выносливости требует применения комплекса разнообразных тренировочных средств, поскольку каждое конкретное занятие, вызывая достаточно разностороннее воздействие на организм, все же преимущественно совершенствует одну какую-либо сторону функциональных возможностей. В итоге, тренировки, направленные на развитие аэробной выносливости, должны обеспечить повышение работоспособности кардиореспираторной системы, способствовать увеличению количества эритроцитов в крови и содержанию в них гемоглобина, росту концентрации миоглобина в мышечных клетках, лучшему обеспечению работающих органов энергетическими субстратами.

С этой целью применяются различные варианты повторной и интервальной тренировки, а также непрерывная длительная работа равномерной или переменной мощности.

В качестве примера построения тренировочных занятий, направленных на развитие аэробной выносливости, можно привести так называемую циркуляторную интервальную тренировку. Этот метод заключается в чередовании кратковременных упражнений небольшой интенсивности и длительностью от 30 до 90 с с интервалами отдыха такой же продолжительности. Такая работа стимулирует аэробное энергообеспечение мышечной деятельности и приводит к улучшению показателей кардиореспираторной системы.

Для повышения содержания в мышцах миоглобина может быть использована миоглобиновая интервальная тренировка. Спортсменам предлагаются очень короткие нагрузки средней интенсивности, чередуемые с такими же короткими промежутками отдыха. Выполняемые кратковременные нагрузки в основном обеспечиваются кислородом, который депонирован в мышечных клетках в форме комплекса с миоглобином. Короткий отдых между упражнениями достаточен для восполнения запасов кислорода.

Для увеличения кислородной емкости крови, а также для повышения концентрации миоглобина хороший эффект дают тренировки в условиях среднегорья.

Особенностью развития аэробной выносливости является возможность использования неспецифических упражнений, и в первую очередь подвижных игр, что позволяет сделать тренировочный процесс разнообразным и интересным.

Важную информацию для оценки аэробной выносливости можно Получить путем определения содержания и соотношения в крови основных энергетических субстратов в ходе выполнения продолжительной работы. У нетренированных людей между содержанием в крови глюкозы и продуктов мобилизации жира существуют реципрокные отношения. Высокая концентрация глюкозы в крови препятствует мобилизации жира из депо. Поэтому у нетренированных людей повышение содержания в крови жирных кислот, глицерина и кетоновых тел наблюдается только на фоне снижения концентрации глюкозы. У спортсменов, хорошо тренированных в аэробном режиме, мощная мобилизация жира отмечается на фоне не только нормального, но и повышенного содержания глюкозы в крови. Повышенная утилизация жира и кетоновых тел позволяет организму не только сохранить углеводы печени и крови, но и замедлить расходование мышечного гликогена, снижение концентрации которого является одним из факторов развития утомления.

В заключение необходимо отметить, что все компоненты выносливости наряду с рассмотренными выше энергетическими и структурными факторами в значительной мере зависят от технической, тактической и психологической подготовки. Хорошая техническая подготовка, правильно избранная тактика позволяет спортсмену экономно и рационально использовать энергетические резервы и тем самым дольше сохранять работоспособность. За счет высокой мотивации, большой силы воли спортсмен может продолжать выполнение работы даже в условиях наступления в организме значительных биохимических и функциональных сдвигов.

Характер метаболизма в тканях во многом определяется питанием. У человека и ряда других млекопитающих метаболическим превращениям подвергаются продукты, абсорбируемые после переваривания содержащихся в пище углеводов, липидов и белков. Это главным образом глюкоза, триацилглицерол и, аминокислоты. У жвачных животных (и в меньшей степени у других травоядных) целлюлоза переваривается симбиотическими микроорганизмами с образованием низших гомологов органических кислот (уксусной, пропионовой, масляной); тканевый метаболизм у этих животных адаптирован к утилизации в качестве основного субстрата низших жирных кислот.

Метаболизм углеводов (рис. 16.2)

У всех млекопитающих глюкоза в клетках превращается в пируват и лактат по метаболическому пути, который называется гликолизом. Для вступления на этот путь необходимо предварительное фосфорилирование. Гликолиз может протекать в отсутствие кислорода (анаэробно), если конечным продуктом является лактат. Ткани, которые потребляют кислород (аэробные условия), способны осуществлять превращение пирувата в ацетил-СоА, который далее может вступать в цикл лимонной кислоты; в этом цикле ацетил-СоА полностью окисляется до большая часть потенциальной свободной энергии процесса запасается в форме АТР в результате окислительного фосфорилирования (рис. 17.2). Таким образом, глюкоза служит главным видом топлива для многих тканей, однако она (а также ее метаболиты) участвует и в других процессах. 1. Глюкоза превращается в полимер гликоген, который

Рис. 16.2. Общая схема метаболизма углеводов с указанием главных конечных продуктов.

запасается в ряде тканей, в особенности в скелетных мышцах и в печени. 2. Субстрат пентозофосфатного пути является одним из промежуточных продуктов гликолиза. Этот путь служит источником восстановительных эквивалентов используемых в процессах биосинтеза, например в биосинтезе жирных кислот; кроме того, он является источником рибозы, необходимой для синтеза нуклеотидов и нуклеиновых кислот. 3. Трнозофосфат, образующийся на одной из стадий гликолиза, является источником глицерола, используемого в синтезе ацилглицеролов (жиров). 4. Пируват и ряд промежуточных соединений цикла лимонной кислоты-это источники углеродных скелетов, используемых в синтезе аминокислот, а ацетил-СоА служит основным строительным блоком в синтезе длинноцепочечных жирных кислот и холестерола-предшественника всех синтезируемых в организме стероидов.

Метаболизм липидов (рис. 16.3)

Источником длинноцепочечных жирных кислот служат синтез de novo из ацетил-СоА (в свою очередь образующегося из углеводов) и пищевые липиды. В тканях жирные кислоты могут либо окисляться до ацетил-СоА (Р-окисленне), либо эстерифицироваться в ацилглицеролы (триацилглицерол является главным энергетическим резервом организма). образующийся при -окислении, участвует в ряде важных процессов.

1. Ацетил-СоА может полностью окисляться до в цикле лимонной кислоты. Жирные кислоты являются источником значительных количеств энергии (тканевым топливом) при утилизации в процессе Р-окисления, а затем в ходе реакций цикла лимонной кислоты.

2. Ацетил-СоА служит источником атомов углерода для холестерола.

3. В печени из него образуется ацетоацетат - исходное кетоновое тело. Кетоновые тела являются альтернативным водорастворимым тканевым топливом, которое при определенных условиях может стать важным источником энергии (например, при голодании).

Метаболизм аминокислот (рис. 16.4)

Аминокислоты необходимы для синтеза белков. Некоторые из них должны обязательно поступать с пищей (незаменимые аминокислоты), поскольку ткани не способны их синтезировать. Остальные аминокислоты (заменимые) также поступают с пищей, но могут образовываться и из промежуточных метаболитов путем переаминировання, т. е. переноса аминогрупп от других аминокислот, присутствующих в избыточном количестве. После дезаминирования избыточный аминный азот удаляется в составе мочевины; остающийся после переаминировання углеродный скелет либо окисляется до в цикле лимонной кислоты, либо превращается в глюкозу (глюконеогенез) или кетоновые тела.

Рис. 16.3. Общая схема метаболизма липидов с указанием главных конечных продуктов. Кетоновые тела включают ацетоацетат, 3-гидроксибутират и ацетон.

Рис. 16.4. Общая схема метаболизма аминокислот с указанием главных конечных продуктов.

Помимо использования в синтезе белков аминокислоты служат предшественниками ряда важных соединений - пуринов, пиримидинов, гормонов (например, адреналина и тироксина).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Курсовая работа

на тему:

« Биохимические пути в исследовании механизмов психических и нервных болезней »

ВВЕДЕНИЕ

Патологические состояния центральной нервной системы многочисленны, многообразны и чрезвычайно сложны по механизму возникновения и развития. В этой работе будут показаны только пути, на которых ученые-биохимики добились некоторых успехов в познании отдельных элементов патологических процессов, лежащих в основе ряда болезней и болезненных состояний центральной нервной системы.

1. ХИМИЧЕСКИЕ ФАКТОРЫ ВНУТРЕННЕГО ПОДКРЕПЛЕНИЯ ПРИ НАРКОМАНИЯХ

У примитивно устроенных организмов цепочка, реакций в центральной нервной системе, начинающаяся поя действием той или иной мотивации, например голода, инстинкта продолжения рода и т.п., имеет минимальное число промежуточных звеньев и завершается непосредственным достижением или недостижением цели. Достижение конечной цели является простейшим подкреплением, вознаграждающим фактором. У относительно высокоразвитых организмов процесс достижения цели может быть разделен на большее число этапов. Завершение промежуточного этапа не вознаграждается конечным результатом и, как установлено, существует система так называемого внутреннего подкрепления. Например, выполняя определенную работу, современный человек, как правило, не получает после ее завершения пищевого вознаграждения, но получает деньги, испытывая при этом определенное удовлетворение и уверенность в возможности с помощью денег реализовать цель - приобретение и потребление пищи. В центральной нервной системе чувство удовлетворения может быть обеспечено с помощью ряда гуморальных факторов, к которым в первую очередь относятся нейропептиды - некоторые из опиоидов, нейротензин и др.

Простейший эксперимент, позволяющий в опытах на животных выявить эти гуморальные факторы, состоит в предоставлении им возможности выбора веществ, вызывающих приятные ощущения при самовведении в желудочек мозга. Белая крыса, например, с вживленными в мозг канюлями, имеющая возможность нажатием той или иной педали инъецировать себе раствор одного из испытуемых веществ, довольно быстро переходит от беспорядочного нажатия разных педалей к заведомо предпочтительному самовведению довольно узкого круга веществ. Существуют и более сложные формы такого рода экспериментов.

В результате, к категории предпочитаемых веществ - вероятных внутренних факторов подкрепления - сейчас относят некоторые из опиоидных нейропептидов - р-эидорфин и эике-фалины , а также нейротензин. Одновременно выявляются и нейропептиды, обладающие противоположным действием: вазопрессин и, по-видимому, меланостатин и тиролиберин.

Вводя себе извне нейропептиды вознаграждения, животное обходится без нормального механизма, необходимого в естественных условиях для обеспечения пути к цели, завершение которого вознаграждается образованием внутреннего химического сигнала - фактора внутреннего удовлетворения.

Многие исследователи рассматривают эти эксперименты как модель наркомании. Существо наркомании состоит, с этой точки зрения, в подмене внешним химическим агентом естественного внутреннего химического вознаграждения. Такая подмена при доступности химического эквивалента внутреннего фактора не требует целенаправленного труда и ряда других процессов для того, чтобы достичь состояния удовлетворения, наслаждения и т.п. Экзогенные опиаты - морфин и его аналоги - являются эквивалентами внутренних опиоидов, взаимодействуя с теми же классами рецепторов головного мозга, что и опиоидные нейропептиды. Характерно, что наиболее апробированным средством снятия абстинентных состояний у наркоманов является специфический блокатор опиатных рецепторов - налоксон, а также его аналоги.

Механизмы наркоманий, вызванных опиатами, находят, таким образом, истолкование, которое можно отнести к категории достаточно обоснованной гипотезы. Сложнее обстоит дело с рядом других наркотиков - кокаином, каниабиноидами, ЛСД, мецкалинами и др. В отношении некоторых из них рассматриваются гипотезы, аналогичные изложенной выше. В частности, катехо ламины, особенно норадреналин, и серотонин, в определенных зонах мозга участвуют в процессах внутреннего подкрепления. Об этом свидетельствует наличие зон, расположенных по ходу катехоламинергических и серотонинергических путей, раздражение которых вызывает ощущения удовлетворения, удовольствия и т.п. Многие из упомянутых выше наркотинов известны как агенты, вмешивающиеся в катехоламинергическую и серотонинергическую нейротрансмиссию. Поэтому, хотя и с меньшей степенью доказательности, чем в случае опиатных наркотиков, гипотеза о наркомании, как подмене факторов внутреннего подкрепления, правомочна и для многих неопиатных соединений. Следует также иметь в виду, что механизмы и химические факторы внутреннего подкрепления известны лишь частично.

В рамки изложенной гипотезы пытались заключить и данные о механизмах алкоголизма. Прослеживаются сложные связи между развитием алкоголизма, уровнями опиоидных пептидов, непептидных факторов, подобных опиатам, катехоламинов, серотонина и других гуморальных регуляторов. Сложность этих связей такова, что, не исключая роли факторов внутреннего подкрепления, целесообразно рассмотреть ряд данных о механизмах алкоголизма особо.

2. АЦЕТАЛЬДЕГИД, НЕПЕПТИДНЫЕ И ПЕПТИДНЫЕ ОПИОИДЫ И АЛКОГОЛИЗМ

Первые исследования биохимических механизмов алкоголизма привели к установлению трех важных фактов. Во-первых, этанол является мембранотрогтным агентом и может в концентрациях, вызывающих опьянение, менять состояние рецепторов и многих энзимов, инкорпорированных в мембрану. Во-вторых, широко представленный в организме, особенно в печени, фермент - алкогольдегидрогеназа, участвующая в метаболизме многих регуляторных соединений, вступает в контакт с поступающим извне этанолом и как бы отвлекается от ряда нормальных функций, что, в свою очередь, ведет к отклонениям в синтезе ряда регуляторов. В-третьих, наконец, алкогольдегидрогеназа быстро превращает часть поступающего этанола в ацетальдегид; последний может быть источником образования ряда биоактивных факторов и, кроме того, его прямое действие на мозг вызывает неприятные ощущения - синдром похмелья; далее ацетальдегид постепенно окисляется митохондриальной ацетальдегиддегидрогеназой и образующийся ацетат может служить для синтеза жирных кислот и т.п. Ощущения, вызываемые ацетальдегидом, явились отправной точкой для создания ряда противоалкогольных средств, подавляющих ацетальдегиддегидрогеназу, повышающих тем самым уровень, ацетальдегида и ускоряющих, в результате, развитие тяжелого состояния после приема даже небольших доз алкоголя. В практику вошел, в частности, такой ингибитор этого фермента, как тетурам, систематическое введение которого приносит определенную пользу в лечении алкоголизма. Особенно перспективными оказались воздействия, позволяющие на длительное время изменять активность двух указанных главных ферментов метаболизма этанола. В экспериментах на крысах-алкоголиках эффективной оказалась индукция аутоантител, связывающих эти ферменты.

а взаимодействуя с серотонином, - метил-тетрагидро- -карбо-лин:

Эти соединения имеют некоторое структурное сходство с морфином.

Адетальдегид способен также тормозить один из этапов катаболизма дофамина - его окислительное дезаминирование, - так что накапливается промежуточный продукт - 3,4 - д иокси-фенилацетатальдегид. Последний, взаимодействуя опять-таки с дофамином, образует тетрагидропапаверолин, способный, в свою очередь, превращаться в соединения, все более приближающиеся по структуре к морфину, в том числе - норморфин:

В последние годы прослежены метаболические пути, ведущие к образованию в организме млекопитающих даже кодеина и морфина, хотя и в очень малых количествах. Более того, сейчас можно считать, что в микроконцентрациях многие соединения этого ряда постоянно представлены в мозге. Однако введение извне этанола и образование из него ацетальдегида резко повышает уровень морфиноподобных соединений.

Установлена способность сальсолинола и других эндогенных аналогов морфина, образующихся с участием ацетальдегида, служить как агонистами, так и блокаторами опиоидных рецепторов в зависимости от концентрации и других условий. Следствия такого взаимодействия могут состоять, во-первых, в подмене эндогенных факторов вознаграждения и, во-вторых, если концентрация сальсолинола в организме алкоголика постоянно повышена, то блокада рецепторов в отношении собственных эндогенных, наиболее адекватных, факторов вознаграждения может вызвать постоянное чувство неудовлетворенности и побуждать к поиску наркотических средств.

Пока трудно отдать предпочтение одной из этих возможностей, но образование сальсолинола и подобных ему непептидных морфиноподобных соединений при алкоголизме указывает на вероятную связь опиоидной системы с механизмом алкоголизма. К этой же мысли приводит тот факт, что классический блокатор опиатных рецепторов - налоксон оказался полезен также при лечении алкоголизма.

Наконец, показательно, что у большинства алкоголиков возрастает уровень антител к морфиноподобным соединениям. Понятна поэтому настойчивость, с которой современные исследователи после открытия опиоидных пептидов ищут корреляции между уровнем последних, а также состоянием опиоидных рецепторов, с одной стороны, и глубиной и фазой алкоголизма, с другой стороны. Найденные сейчас корреляции, подтверждающие более или менее значительное участие системы опиоидов в механизмах алкоголизма, свидетельствуют о довольно сложных отношениях, подчас противоречивых. Так, например, показано меньшее содержание метэнкефалина в мозге предрасположенных к алкоголю животных и меньшая концентрация в гипоталамусе р-эндорфина у животных со сформированным алкоголизмом и наследственно предрасположенных к алкоголизму.

Установлено также, хотя и не на всех экспериментальных моделях, что введение таким животным этанола повышает уровень метэнкефалина и р-эндорфина.

Можно пытаться толковать эти данные так, что сниженные уровни эндогенных опиоидов в мозге обусловливают влечение к этанолу как к фактору, ведущему к образованию в мозге опиоидов, т.е. к нормализации гуморальных систем вознаграждения. С этим согласуются феномены снятия абстиненции и некоторого снижения влечения к алкоголю при введении извне опиоидных нейропептидов, а также некоторых ингибиторов протеолитического распада опиоидных пептидов в организме. Однако ряд экспериментальных данных трудно согласовать с таким толкованием. Так, в отличие от метэнкефалина содержание лейэнкефалина в мозге предрасположенных к алкоголизму животных повышено.

Противоречивы данные об изменениях уровня р-эндорфина в плазме и цереброспинальной жидкости при введении этанола. Источником недоразумений является также то, что при алкоголизме возможны, и в ряде работ зарегистрированы, не только изменения уровня эндогенных опиоидов, но и состояния их рецепторов в силу упоминавшейся мембранотропности этанола. Есть данные о снижении сродства энкефалинов к их рецепторам под действием этанола. Следовательно, для строгого учета роли эндогенных опиоидов при алкоголизме необходимо совместное рассмотрение данных об уровне опиоидов и о состоянии их рецепторов. Таких данных пока недостаточно.

Богатый, хотя опять-таки неоднозначный, экспериментальный материал собран о роли катехоламинов и серотонина в развитии алкоголизма. Здесь прослеживается четкая зависимость действия этанола от этапа, фазы развития алкоголизма.

Однократный прием этанола вызывает вначале усиленный выброс катехоламинов - дофамина и норадреналина, обусловленный, вероятно, мембранотропным действием алкоголя на пресинаптические рецепторы. Секретируемые катехоламины входят в число факторов внутреннего вознаграждения, вызывающих эйфорическое состояние. После выброса катехоламинов срабатывает система обратной регуляции, которая не просто нормализует состояние системы, а создает временный дефицит катехоламинов в синаптической щели и жидкостях организма. Возможно, это служит одним из побуждающих факторов к повторению приема этанола.

При развитии хронического алкоголизма состояние сниженного выхода, усиленной деградации и повышенного обратного захвата катехоламинов как бы закрепляется, создавая, как полагают, постоянный механизм, побуждающий к частому приему этанола для временной коррекции этих нарушений. Полное прекращение приема алкоголя на стадии развитого хронического алкоголизма ведет к экстренной мобилизации всех существующих механизмов синтеза, выброса и сохранения катехоламинов в синаптической щели. Разрегулированная на предыдущих стадиях система срабатывает так, что происходит не нормализация уровня катехоламинов, а чрезмерное возрастание их концентрации, в частности дофамина. Они участвуют в развитии абстиненции.

Сходной является, в общем, и динамика изменений выхода и превращений серотонина. Извращения его выброса могут быть связаны с эйфорией и галлюцинациями. Вместе с тем роль серотонинергической системы представляется пока неоднозначной - Так, с одной стороны, ряд стимуляторов синтеза и выхода серотонина, блокаторы обратного захвата и многие агонисты подавляют влечение к этанолу. В то же время селективные антагонисты 5НТ 3 -рецепторов и такие ингибиторы синтеза серотонина, как р-хлорфенилаланин, также подавляют потребление этанола. Активная иммунизация животных против серотонина ведет к снижению его уровня в плазме крови и в мозге и к подавлению влечения к алкоголю экспериментальных животных. По-видимому, участие серотонинергической системы в механизмах влечения к алкоголю очень тесно связано с типом рецепторов серотонина, а также локализацией как рецепторов, так и мест синтеза этого медиатора.

В механизмы наркоманий и алкоголизма вовлечена также главная тормозная система мозга - ГАМК-ергическая. Подавление этой системы позволяет понять устойчивость патологических влечении.

Характерно, что действие на влечение к алкоголю ряда нейропептидов более или менее коррелирует с их участием в развитии или подавлении стрессовых состояний. Вообще известно, что стресс сам по себе стимулирует влечение к алкоголю. Пептид дельтасна, оказавшийся сильным противострессовым агентом, достоверно снижает потребление этанола экспериментальными животными при систематическом его введении. У предрасположенных к алкоголю белых крыс его содержание в плазме крови и стриатуме снижено.

В целом представленные результаты исследований в области нейрохимических механизмов алкоголизма не образуют пока единой стройной картины, но свидетельствуют об относительной близости времени, когда она сформируется.

3. СТРАХ, ФОБИИ, р -КАРБОЛИНЫ, ЭНДОЗЕПИНЫ И ХОЛЕЦИСТОКИНИН _4

Сравнительно давно фармакологи создали новый класс транквилизаторов -бензодиазепины, вошедшие сейчас в широкую медицинскую практику. Затем были выявлены рецепторы этих соединений в головном мозге. Поскольку не были известны внутренние лиганды этих рецепторов, их обозначили как рецепторы диазепама. Далее, оказалось, что эти рецепторы являются частью рецепторов гамма-аминомасляной кислоты или самостоятельным рецептором, прочно связанным с рецептором ГАМК. Наконец, удалось выделить часть эндогенных лигандов этих рецепторов: во-первых, большой пептид - эвдозепин, состоящий примерно из сотни аминокислотных остатков, его активные фрагменты - малые 18- и 6_членные пептиды и, во-вторых, непептидные соединения - производные так называемых -карболинов. Примером последних является метилтетрагидро -карболин . Активные фрагменты эндозепинов имеют структуру: QATVGDVNTDRPGLLDLK и GLLDLK.

Эти соединения оказывают действие на поведение животных, обратное действию ГАМК и ее аналогов. Они вызывают беспокойство, проявления страха и в опытах на грызунах проконфликтное поведение. В США документировано острое беспокойство, паническое состояние людей, которым вводили одно из производных -карболина.

Что касается транквилизаторов - бензодиазепинов, с которых начался этот цикл исследований, то они оказались блока - торами рецепторов эндозепинов, подавляющими их взаимодействие с эндогенными факторами страха, беспокойства и проконфликтного поведения.

В последние годы внимание нейрохимиков и психиатров привлек еще один пептид, вызывающий беспокойство, страх и паническое поведение как у людей, так и у животных, - наименьший из обнаруживаемых в мозге С-конпевых фрагментов холецистокинина - ХЦК_4. Его действие на поведение опосредовано стимуляцией некоторых отделов дофаминергической системы через специальные рецепторы ХЦК В. Уже синтезированы антагонисты ХЦК_4, с помощью которых удается снизить уровень тревожности и панических реакций как в опытах на животных, так и в первых клинических исследованиях.

Для понимания биохимических механизмов ряда расстройств психики значение этих открытий весьма велико. Многие психические расстройства сопровождаются навязчивыми страхами, фобиями, крайне беспокойным и конфликтным поведением. Они характерны, в частности, для поздних стадий алкоголизма, некоторых проявлений шизофрении и др.

4. ДОФАМИН И ПАРКИНСОНИЗМ

Раскрытие биохимических процессов, лежащих в основе болезни Паркинсона - глубокого нарушения стереотипной двигательной активности, ее координации и инициации, - стало одним из первых ярких достижений патологической нейрохимии.

Синдром болезни удалось воспроизвести в экспериментах на животных, вводя им 6 ксидофамин . Этот аналог дофамина проникает в везикулы нервных окончаний, предназначенные для накопления и выброса катехоламинов, конкурирует с последними за включение в везикулы и, в конечном счете, подавляет катехоламинергическую трансмиссию. Этот процесс иногда называют химической десимпатизацией, имея в виду особую роль катехоламинов в симпатической нервной системе. Однако это название неточно, ибо катехоламины широко распространены и функционируют во многих других отделах нервной системы.

Дофаминергические нейроны стриатума, части хвостатого ядра и особенно черной субстанции, являющиеся основными центральными организаторами стереотипной двигательной активности, оказались высокочувствительными к такому действию 6_оксидофамина. В результате впервые удалось, вводя вещество определенной биохимической направленности действия, вызвать такое специфическое заболевание, как паркинсонизм.

В последние годы появилась возможность еще более точного определения нейронов, повреждение которых достаточно для возникновения паркинсонизма. Синтетический нейротоксин - метилфенилтетрапэдропиридин избирательно связывается с меланинсодержащими нейронами черной субстанции, вызывая их депигментацию и паркинсонический синдром. Отмечено также существенное снижение содержания в черном веществе метэнкефалнна и холецистокинина и обнаружен, наконец, дефицит одного из глиальных белков, выполняющих тропические функции по отношению к нейронам, синтезирующим глутамин.

Участие дофаминергических систем в паркинсоническом синдроме предполагает возможность облегчения синдрома введением в мозг дофамина. Поскольку дофамин не проходит гематоэнцефалический барьер, воспользовались для введения больным его ближайшим предшественником - диоксифенилаланином. Он существенно облегчает состояние паркинсоников. Следует, однако, подчеркнуть, что длительное введение больным больших доз диоксифенилаланина, значительно усиливающего синтез дофамина во всех отделах мозга, может вести к появлению симптомов, сходных с другим психическим заболеванием - шизофренией, одним из физиологических и биохимических проявлений которого является именно гиперактивность дофаминергической системы.

Новейший путь лечения паркинсонизма состоит в пересадках клеток или участков ткани здорового мозга из мезэнцефалона человеческих плодов, способных продуцировать дофамин, в определенные участки мозга больного. Заметим, что особенности иммунологического статуса мозга значительно облегчают такие пересадки. Результаты первых серий таких пересадок обнадеживают. Сейчас накапливается опыт длительного наблюдения следствий этих операций и разрабатываются культуры клеток мезэнцефалона с тем, чтобы отказаться от использования материалов, получаемых при абортах.

5. ШИЗОФРЕНИЯ, КАТЕХОЛАМИНЫ И ВНУТРЕННИЕ НЕЙРОЛЕПТИКИ

Практически полный отказ современной психиатрии от палат для буйных психических больных объясняется двумя причинами, различными внешне, но сходными по сути. Первая состоит в хирургическом вмешательстве - перерезании катехол-аминергических путей, идущих к лобной коре от таламуса, ретикулярной формации, черной субстранции и некоторых других отделов мозга. Довольно эффективное для снятия агрессивных проявлений шизофрении, это средство, тем не менее, связано с определенной деградацией умственных способностей и в настоящее время уступило место фармакологическим воздействиям. Последние состоят в подавлении рецепции и/или секреции катехоламинов, особенно дофамина, такими соединениями, как галоперидол, трициклические нейролептики и др. Строго говоря, эти агенты не столько лечат больных от шизофрении, сколько подавляют ее проявление: агрессивное поведение, галлюцинации, стереотипную двигательную активность и т.п.

Эффективность указанных средств приближает к пониманию механизмов болезни, включающих глубокое извращение и патологическое усиление в определенных отдела, мозга шизофреников катехоламинергической, особенно дофал. инергической, трансмиссии. Установлено 4-5_кратное повышение плотности рецепторов дофамина D 4 . Показательно, что одно из лучших антипсихотических лекарств - клозапин - обладает наибольшим сродством именно к рецепторам D 4 . Выявлен также значительно повышенный уровень дофамина в височной доле головного мозга, особенно в левой миндалине. Отмечен и ряд морфологических изменений в тех же отделах - увеличение объема боковых желудочков, утончение парагиппокампальной коры и др.

Противоречивыми, в отличие от закономерных изменений содержания дофамина, являются сведения о содержании норадреналина в различных отделах мозга шизофреника. Относительно воспроизводимы лишь данные о повышении уровня норадреналина в цереброспинальной жидкости.

Особого внимания заслуживают сообщения о воспроизведении отдельных проявлений шизофрении при воздействии агентов, так или иначе вмешивающихся в состояние катехоламинергической и серотонинергической систем. Так, аналог дофамина - растительный алкалоид мецкалин вызывает галлюцинации, в том числе цветные, имеющие сходные элементы с шизофреническими.

Животные, получившие высокие дозы фенамина, после периода возбуждения проявляют монотонную, стереотипную двигательную активность, напоминающую таковую у шизофреников.

Галлюцинаторные явления, наблюдаемые при введении некоторых аналогов серотонина, например диэтиламида лизергиновой кислоты , также заслуживают внимания с точки зрения возможной роли при шизофрении не только извращений катехоламинергической, но и серотонинергической трансмиссии.

Картина патологического, несбалансированного усиления при шизофрении катехоламинергических и, возможно, серотонинергических систем в определенных участках мозга хорошо согласуется и с данными об изменении набора и активности моноаминооксидаз, расщепляющих соответствующие нейромедиаторы после выхода из нервного окончания. Из четырех форм МАО, обнаруженных в мозге человека, - I, II, IIи III - у шизофреников отсутствует III и существенно модифицирована II форма.

Наконец, в механизмы шизофрении вовлечена еще одна нейромедиаторная система - глутаматергическая. Отмечено ее значительное ослабление во фронтальной коре. Напомним, что с этой системой особенно тесно связан ряд высших функций мозга. Такой антагонист глутамата, как пенциклидин, имитирует некоторые симптомы шизофрении на животных. Сейчас изучается возможность применения агонистов глутаматергических рецепторов для терапии шизофрении.

Меньше данных накоплено пока в отношении изменений пептидной регуляции при шизофрении.

В нервных окончаниях, как правило, встречаются те или иные ассоциации классических яюйромедиаторов с нейропептидами. В частности, дофаминергические окончания особенно часто содержат холецистокинин _8, вазоактивный интестинальный пептид и, реже, соматостатин и вещество Р. В норад-рененргических окончаниях частыми спутниками норадреналина являются нейропептиды Y и энкефалины. Известно также, что холецистокинин_8 и, с меньшей определенностью, соматостатин тормозят дофаминергическую передачу. Аналогичные данные имеются в отношении действия энкефалинов на норад-ренергическую трансмиссию. Активатором же норадренергаческой

передачи является нейропептид Y, а дофаминергической, опять-таки с меньшей определенностью, - вазоактивный интестинальный пептид. Поэтому существенное значение имеют данные о снижении содержания холецистокинина_8 в гиппокампе и миндалине мозга шизофреников. Снижено также содержание в гиппокампе соматостатина, а в миндалине - метэнкефалина и вещества Р, однако концентрация вазоактивного интестинального пептида в миндалине повышена.

Со всей этой группой данных ассоциируются сведения о нейролептическом действии холецистокинина_8 и родственного ему пептида - церулеина, а также некоторых эндорфинов. Оно проявляется в тестах, разработанных в свое время для отбора лекарств-нейролептиков: по способности вызывать каталепсию, по действию на агрессивное поведение, по подавлению эффектов фенамина и др. Снижение ими дофаминергической трансмиссии показано и в экспериментах на клеточном уровне. Все это послужило основанием для наименования холецистокинина_8, а также дезтирозил- и дезэнкефалин-эндорфинов эндогенными нейролептиками. К сожалению, попытки использовать их как лечебные средства для купирования шизофренического синдрома у людей пока не дали ощутимых результатов. Можно говорить пока лишь о положительных тенденциях, в частности о перспективности совместного применения холецистокинина или церулеина с обычными нейролептиками.

Более перспективными представляются исследования, основанные на данных о способности короткого концевого тетрапептида холецистокинина - ХЦК_4 - вызывать состояния тревоги, страха и паники. Действие ХЦК_4 опять-таки связано с активацией части дофаминергической системы. Поэтому на синтезе и испытаниях антагонистов ХЦК_4 основаны надежды на создание нового класса лекарственных веществ для лечения некоторых форм шизофрении.

6. КАТЕХОЛАМИНЫ, НЕЙРОПЕПТИДЫ И ДЕПРЕССИВНЫЕ СОСТОЯНИЯ

Подавление катехоламинергической и серотонинергической систем сопряжено с депрессивным состоянием. Однако картина подавления катехоламинергической трансмиссии при депрессиях не является простым обращением того, что наблюдается, например, при агрессивных формах шизофрении, а механизмы депрессий не сводятся только к нарушениям классических медиаторных систем.

Накопилось немало данных о существенном снижении норадренергической трансмиссии при депрессиях. В меньшей степени снижается активность серотонинергической системы. Еще меньше сдвигов в дофаминергической трансмиссии. Отсутствуют существенные изменения в других классических нейромедиаторных системах. В согласии с этими данными находится эффективность снятия депрессии большой группой лекарственных средств - имипрамином, амитршггилином, инказаном и многими другими, действие которых состоит либо в торможении обратного захвата норадреналина и серотонина, либо в ингибировании их расщепления моноаминооксидазами. Заметим лишь, что таков механизм действия антидепрессантов только на начальных этапах применения. При длительном же их введении включаются сложные изменения в рецепции медиаторов. При введении людям веществ, снижающих уровень катехоламинов, может возникнуть депрессия. Таким веществом оказался резерпин, применяемый при лечении гипертонии.

Таким образом, значимость снижения активности катехоламинергической системы при развитии депрессий очевидна; однако это снижение не является простой противоположностью тем изменениям, которые описаны для шизофрении. При шизофрении - преобладающее усиление дофаминергической трансмиссии, при депрессии - преимущественное подавление норадренергической и серотонинергической. Полагают также, что в характерном для депрессий подавлении психической и двигательной активности участвует также дисбаланс между возбуждающей глутаматергической и тормозной ГАМК-ергической системами, отмечаемый как при депрессиях, так и при шизофрении. Наконец, в мозге больных депрессиями обнаружены значительные, изменения плотности опиатных рецепторов. Это указывает на возможные отклонения в системе «внутреннего вознаграждения».

7. СУДОРОЖНЫЕ СОСТОЯНИЯ, ЭПИЛЕПСИЯ, ГЛУТАМАТНЫЕ РЕЦЕПТОРЫ И ИХ АНТАГОНИСТЫ

Биохимические механизмы судорожных состояний и особенно такой болезни, как эпилепсия, принципиально отличаются от описанных выше для шизофрении, депрессий, наркоманий и алкоголизма. Важная роль в индукции синдрома эпилепсии принадлежит глутаминергической системе. Очевидно также значение ГАМК-ергической и эндозепамергической систем.

С глутаминергической трансмиссией тесно связана не только возможность индукции судорожных состояний, но и ряд высших функций ЦНС, таких, например, как память. В этом одна из причин того, что эпилепсия не сводится к судорожному синдрому и сопряжена с рядом сложных изменений психики.

Рецепторы глутаминовой кислоты - образования сложные и неоднородные. Характерно, что раскрытие их структуры и разнообразия было ускорено обнаружением веществ, которые иногда называют возбуждающими нейротоксинами. К ним относится каиновая кислота, квисквалевая кислота и ряд других соединений, многие из которых имеют общие с глутаматом элементы структуры. Сам по себе глутамат при интрацеребральном введении в определенные зоны мозга может вызывать приступы судорог. Однако каи-нат и квисквалат оказались особенно мощными индукторами судорог и, более того, агентами, способными специфически разрушать нейроны, несущие глутаматные рецепторы.

На глутаматных рецепторах выявлены участки связывания барбитуратов - агентов, тормозящих их функцию и обладающих соответственно противосудорожной активностью. Один из самых мощных и специфичных блокаторов NMDA_глутаматных рецепторов - 2 мино _7_ф осфоногептановая кислота - предотвращает припадки эпилепсии у экспериментальных животных. Все это заставляет считать изменения глутаминергической трансмиссии одними из узловых в патогенезе эпилептиморфных судорожных состояний.

Поддержкой этой же гипотезы служит обнаружение в плазме крови эпилептиков значительно повышенных уровней антител к белкам глутаматного рецептора. Это используется для диагностики скрытых форм эпилепсии и оценки тяжести заболевания. Подобное явление отражает, по-видимому, снижение функций гематоэнцефалического барьера при развитии эпилепсии, сопровождающееся выходом в периферический кровоток определенных количеств белков рецептора и их фрагментов, и, далее, образованием антител к ним. Возможно, сам патогенез эпилепсии подобен патогенезу аутоиммунных болезней мозга, при которых аутоантитела к белкам мозга служат основным повреждающим фактором. В том, что последняя гипотеза правомочна, убеждают, во-первых, данные о повышенном уровне в плазме крови эпилептиков не только антител к белкам глутаматного рецептора, но и к другим белкам и липидам синаптических мембран мозга, например к белку S_100, а также результаты экспериментов с введением в мозг антител, полученных к различным белковыми и липидным фракциям мозга. Эпилептиформные процессы возникали, в частности, при инъекции антител к некоторым фракциям ганглиозидов.

Другая система, связь которой с судорожными состояниями и эпилепсией весьма вероятна, - ГАМК-ергическая.

Тормозные функции ГАМК-ергической системы носят более универсальный, менее специфический характер, чем функции возбуждающих нейромедиаторных систем. Это отражает, в частности, тот факт, что доля ГАМК-ергических терминалей в мозге является наибольшей. Снижение судорожной готовности и облегчение судорожных состояний установлено при центральном введении ГАМК, а также при периферическом введении его аналогов, способных проходить через гематоэнцефалический барьер. Таков же эффект соединений, тормозящих распад, стимулирующих синтез и обратный захват ГАМК: вальпроата натрия , а также прогабида, у-ацетилен-ТАМК и др.

На рецепторах ГАМК обнаружен барбитурат-связывающий участок. В этом случае в отличие от аналогичного участка на глутаматных рецепторах барбитураты усиливают эффект основного нейромедиатора.

Таким образом, барбитураты проявляют противосудорожное действие, изменяя состояние двух категорий рецепторов: глутаматных, подавляя возбуждающее действие ихлигандов, и ГАМКд-рецепторов, стимулируя их тормозное действие.

Еще более подтверждает представление о роли ГАМК-ергической системы в предотвращении и купировании судорожных состояний тот факт, что подавление синтеза ГАМК, напротив, провоцирует судороги. Ярким примером являются судороги у людей при авитаминозе В 6 . Витамин В 6 служит предшественникам пиридоксаль_5_фосфата, который, в свою очередь, является кофактором глутаматдекарбоксилазы, катализирующей последнюю стадию синтеза ГАМК. Провоцируют судороги и такие ингибиторы этого фермента, как аллилглицин, гидразиды и др. Судорожные припадки вызывает и один из ядов грибов - п икротоксинин, тоже связывающийся с ГАМК-рецепторами и подавляющий их активность. С ГАМК-рецепторами сопряжены, участки связывания эндозепинов - пептидов, вызывающих возбуждение, страх и проконфликтное поведение. Они снижают активность ГАМК-рецепторов. Понятно поэтому, что блокаторы рецепторов эндозепинов - бензодиазепиновые транквилизаторы - оказались агентами, облегчающими эпилептические процессы.

В этой связи, хотя излагаемый материал касается природы эпилепсии и эпилептических судорог, следует отметить и данные о патогенезе судорог, вызываемых такими ядами, как стрихнин и столбнячный токсин. Стрихнин блокирует рецепторы глицина, второго по значимости после ГАМК тормозного медиатора центральной нервной системы, функционирующего преимущественно в спинном мозге. Действие же столбнячного токсина направлено преимущественно на блокаду выхода ГАМК из нервных окончаний в головном мозге, что ведет к блокаде тормозных влияний на мотонейроны. Эти данные опять-таки подчеркивают роль нарушений систем тормозных нейромедиаторов.

Была бы, однако, ошибочной попытка свести патогенез эпилепсии и ряда других судорожных состояний только к изменениям глутаминергической системы или ее баланса с ГАМК-ергической системой. Яркой иллюстрацией сложности проблемы и недопустимости поспешного формирования гипотез в этой области являются, например, данные о способности опиоидного пептида - метэнкефалина - вызывать судороги при аппликации в некоторых участках мозга - вне зон, где он проявляет аналитическое действие, типичное для опиоидов. Эти данные послужили также основой для предположений, что эпилептический приступ - результат чрезмерно высокого выброса энкефалина из опиоидергических терминалей с распространением его на зоны мозга, где он способен индуцировать судороги. Предэпилептическое состояние - аура - истолковывалось при этом как эйфоригенное действие опиоида. К сожалению, вся известная совокупность данных о механизмах эпилепсии не позволяет принять столь простое толкование. Здесь особенно важно сочетанное исследование биохимических и физиологических механизмов эпилепсии.

Особого внимания заслуживают появляющиеся в последнее время данные о роли пептидергических систем при эпилепсии и о существовании эндогенных пептидных лигандов глутаматных рецепторов.

Патогенез судорожных состояний и эпилепсии в отличие от многих других психических болезней тесно связан с изменениями энергетических процессов в нейронах, причем в тех из них, которые входят в патологические эпилептогенные очаги.

Отмечены изменения метаболической структуры нейронов и их митохондрий: повышение проницаемости мембран для К + и Na + , коррелирующее с повышением чувствительности белков мембран к протеиназам, снижение синтеза АТФ и др. Аномальные локальные изменения концентраций К + и Na + , а также NH 4 + , выделяющегося при эпилептическом приступе в результате усиления реакций дезамидинирования, могут вызывать или облегчать деполяризацию постсинаптических зон, снижать порог возбудимости и провоцировать судорожный приступ.

С поддержанием энергетического статуса мозга тесно связана система аденозиновых рецепторов Aj. Эти рецепторы выполняют ряд тормозных энергосберегающих функций, вызывая седативные и противосудорожные эффекты. Включение их осуществляется аденозином и аденозинмонофосфатом - конечным продуктом утилизации таких макроэргов, как АТФ и АМФ. Показаны изменения уровня этих соединений при эпилепсии и изучается возможность создания на этой основе новых противоэпилептических средств.

Сейчас трудно окончательно решить вопрос о первичности нарушений в медиаторных, рецепторных или энергетических системах в патогенезе эпилепсии. Несомненна, однако, их взаимодействие. На это указывают глубокие локальные изменения энергетических систем при инъекции каиновой кислоты именно в патологически измененных участках «эпилептического» мозга.

8. ХОЛИНЕРГИЧЕСКИЕ СИСТЕМЫ МОЗГА, р-АМИЛОИД, НЕЙРОПЕПТИДЫ И СЕНИЛЬНЫЕ ДЕМЕНЦИИ

Разновидность старческого слабоумия, так называемая сенильная деменция Альтцгеймеровского типа, сопровождается прежде всего дегенерацией большого числа подкорковых нейронов, холинергические терминали которых широко распространены в мозге. Далее возникают дегенеративные процессы в м-холинергических системах коры и гиппокампа, сопровождаемые снижением уровня ключевого энзима синтеза ацетилхолина - холинацетилтрансферазы и характерными морфологическими изменениями: дефицитом крупных пирамидных нейронов, появлением скоплений белка - участвует в межнейронных контактах и 2) частично расщепляясь специфическими протеазами, образует большой N_концевой фрагмент, который выходит во внеклеточные среды мозга и принимает участие в процессах консолидации памяти. При болезни Альтцгеймера искажается протеолиз белка-предшественника и из средней его части вышепляется небольшой фрагмент из 41 аминокислотного остатка - собственно р-амилоид, откладывающийся на поверхности нейронов. Перестает формироваться и упомянутый выше большой фрагмент, стимулирующий консолидацию памяти. В результате возникает глубокое нарушение способности больных к запоминанию.

Дегенерация больших групп нейронов, входящих в м-холинергическую систему, сопровождается также глубокими изменениями ряда нейропептидных систем. К сожалению, пока нельзя сказать, какие из них первичны, а какие вторичны, но очевидно очень значительное снижение уровней кортиколиберина в затылочной коре и в хвостатом ядре, а также соматостатина в височной и лобной коре. В то же время возрастает уровень нейропептида Y в так называемой безымянной субстанции.

В отличие от ряда других психических болезней пока мало информации о лекарственных средствах, облегчающих сенильную деменцию, и поэтому мало соответствующих дополнительных косвенных указаний на биохимические механизмы болезни. Можно лишь отметить имеющиеся неравноценные данные о кратковременно облегчающих болезнь средствах, усиливающих холинергическую трансмиссию, что, во всяком случае, не противоречит изложенным выше представлениям.

В порядке иллюстрации того, как вредна поспешность в формировании научных гипотез, следует упомянуть предположение о том, что причиной болезни Альтцгеймера является токсическое действие алюминия. Авторы гипотезы исходили из сообщений о высоком содержании алюминия в нейронах гиппокампа и некоторых других отделах мозга у людей, страдавших болезнью Альтцгеймера. Этот факт был сопоставлен с широким употреблением алюминиевой посуды и содержащих алюминий пищевых добавок в современную историческую эпоху. Однако, по данным последних работ в этой области, изменения содержания алюминия если и существуют, то не столь велики, как казалось ранее, причем есть основания полагать, что проникновение в мозг и связывание нейронами алюминия - это вторичный процесс, являющийся следствием нарушения защитной функции гематоэнцефалического барьера-

9 . КАТИОННЫЙ БЕЛОК МИЕЛИНА, НАРУШЕНИЯ ИММУНОЛОГИЧЕСКОЙ АВТОНОМИИ МОЗГА, АЛЛЕРГИЧЕСКИЙ ЭНЦЕФАЛОМИЕЛИТ И РАССЕЯННЫЙ СКЛЕРОЗ

Значительным достижением нейрохимии и нейроиммунологии является раскрытие ведущих механизмов ряда заболеваний, в основе которых лежит процесс повреждения и частичного рассасывания миелиновой оболочки аксонов, в том числе головного мозга. Этот процесс характерен для таких заболеваний, как аллергический энцефалит и рассеянный склероз, и сопровождается глубокими нарушениями функций ЦНС, в частности анорексией, атаксией и параличами; завершается он в значительной доле случаев летально.

Ключевым экспериментом послужило открытие возможности вызывать аллергический энцефалит у разнообразных экспериментальных животных, если вводить им периферически собственный катионный белок миелина с иммуностимулятором - адъювантом Фрейнда.

КБМ составляет около трети белков миелина. и представляет собой крупный пептид, включающий 160-190 а.о., среди которых особенно велика доля остатков основных аминокислот - лизина, аргинина и гистидина - около 25% суммарно. Даже однократное введение этого белка в дозах менее 0,1 мг/кг с иммуностимуляторами вело через 2-4 недели к развитию у большей части животных аллергического энцефалита. Были выявлены, далее, несколько участков КБМ, ответственных за этот эффект. Минимальными по размеру оказались FSWGAEGQR и GSLPQKAQRPQDEN, энцефалитогенность которых близка или даже превышает исходный КБМ.

В конечном счете сложилось представление о том, что катионный белок миелина или его фрагменты, вводимые животным системно или поступающие из мозга в общий кровоток в результате какого-то повреждения гематоэнцефалического барьера, могут восприниматься внемозговой иммунной системой как чужеродные при условии одновременной иммуностимуляции. Возможность восприятия специфических белков центральной нервной системы как чужеродных является следствием частичной иммунологической автономии мозга, возникающей еще в эмбриогенезе. Поэтому поступление катионного белка миелина или его фрагментов на фоне иммуностимуляции ведет к развитию против них иммунного ответа. В частности, происходит специфическая активация Т-лимфоцитов; процесс завершается привлечением и активацией макрофагов, которые и повреждают миелин.

Поддержкой гипотезы об иммунных механизмах аллергического энцефалита служат данные о возможности его профилактики введением больших доз тех же фрагментов катионного белка миелина, но без иммуностимуляторов. Хотя удовлетворительное объяснение механизма возникающей толерантности - задача трудная, очевидна специфичность явления, ибо ряд пептидов и белков, близких по содержанию основных аминокислот не дают профилактического эффекта.

Раскрытие иммунохимических основ аллергического энцефалита и близких к нему болезней - рассеянного склероза и энцефалита, возникающего иногда после вакцинации против вируса бешенства, - заставляет исследователей с возрастающим вниманием относиться к данным об иммунохимических процессах при других психонейрологических болезнях. Выше уже упоминались предположения о возможной роли этих процессов в патогенезе эпилепсии. Разнообразные спектры антител к мозгоспецифическим белкам и ряд изменений иммуно-компетентных клеток регистрируются при шизофрении, депрессиях и др. Очевидной представляется важность накопления и обобщения данных, находящихся на стыке нейрохимии и нейроиммунологии.

В ЫВОДЫ

1. Один из механизмов наркоманий и алкоголизма состоит в имитации наркотиком, этанолом или их метаболитами функций эндогенных соединений, являющихся в норме факторами «внутреннего подкрепления», «вознаграждения» и т.п. Воздействие на их образование и рецепцию - перспективный путь преодоления состояний абстиненции и зависимости.

2. Главные ферменты метаболизма этанола - алкогольдегидрогеназа и ацетальдегиддегидрогеназа. Модуляция их активности оказывает влияние на формирование и поддержание зависимости от алкоголя.

3. Основные нейрохимические механизмы болезни Паркинсона состоят в подавлении синтеза дофамина клетками черной субстанции мозга.

4. Важными элементами нейрохимических механизмов шизофрении являются: усиление синтеза дофамина в височных и некоторых других областях мозга, усиление и извращение катехоламинергической импульсации в направлении от ряда структур среднего мозга к лобной коре, извращение систем удаления и окислительного расщепления моноаминов, изменение пептидергической трансмиссии. Факторы, подавляющие первые два из указанных процессов, временно приостанавливают проявления шизофрении.

5. В основе депрессивных состояний лежит понижение катехоламинергической трансмиссии. Определенную роль играет и извращение серотонинергической системы. Факторы, подавляющие обратный захват и распад катехоламинов, препятствуют проявлению депрессий.

6. Важным элементом механизмов тревожности, патологического страха и проконфликтного поведения может быть активация систем, генерирующих и рецептирующих эндозепины и производные бета-карболина.

7. Характерной чертой патогенеза эпилепсии и ряда других судорожных состояний является повышение и извращение эффективности глутаминергической трансмиссии и нарушения в ГАМК-ергической системе. Факторы, подавляющие первую систему и особенно активирующие вторую, способны купировать судорожные синдромы и некоторые другие проявления эпилепсии.

8. Основой проявлений ряда старческих психозов является нарушение холинергической трансмиссии. Они сопряжены также с извращением синтеза и патологическим накоплением одного из белков ЦНС - бета-амилоида.

9. Многие болезни мозга связаны с иммунохимическими процессами, в том числе с нарушением иммунной автономии мозга. Демиелинизирующие болезни - аллергический энцефалит, рассеянный склероз и др. - могут быть вызваны иммунизацией к катионному белку миелина. При эпилепсии, шизофрении и некоторых других психических болезнях в крови обнаруживаются антитела к отдельным нейроспецифическим белкам.

Подобные документы

    Сущность и последствия рассеянного склероза, происхождение его названия. Возникновение заболевания в результате нарушения иммунной системы; история его изучения и факторы, способствующие появлению. Наиболее распространенные симптомы рассеянного склероза.

    презентация , добавлен 03.12.2012

    Описание рассеянного склероза. Особенности и причины возникновения, появление бляшек в спинном и головном мозге. Наследственная предрасположенность. Клинические признаки. Атактический синдром. Нарушение чувствительности. Типы течения рассеянного склероза.

    презентация , добавлен 21.03.2017

    Класс препаратов, выделенных из макового сока для анальгезии (опиоиды). Эндогенные опиоиды, применение в периоперационном периоде, для регионарной анестезии. Побочный эффект спинального применения опиоидов. Сердечно-сосудистые эффекты опиоидных агонистов.

    контрольная работа , добавлен 04.08.2009

    Представление схемы нервных волокон головного и спинного мозга. Характеристика ассоциативных, комиссуральных (спаечных) и проекционных типов проводящих путей. Классификация нервных волокон по различных признакам. Черепные и спинномозговые нервы.

    презентация , добавлен 27.08.2013

    Общая характеристика мозговых механизмов высших психических функций, особенности системного представления о их локализации. Основные методологические положения антилокализационистов. Синдромный анализ нарушения высших психических функций, его факторы.

    контрольная работа , добавлен 26.11.2010

    реферат , добавлен 21.07.2013

    Особая значимость патогенетической терапии в клинике нервных болезней. Типовые патологические процессы в нервной системе. Нарушение нервной трофики. Генераторы патологически усиленного возбуждения. Механизм повреждения нейронов при ишемии мозга.

    лекция , добавлен 13.04.2009

    Влияние медикаментозных препаратов, используемых для лечения психических болезней, на выбор анестезии. Специфика анестезиологического пособия и осложнения у больных хроническим алкоголизмом, наркоманией, в стадии острого опьянения, при табакокурении.

    реферат , добавлен 13.03.2010

    Наследственные и приобретенные нарушения обмена веществ. Метаболические энцефалопатии как расстройства различных отделов ЦНС. Нарушения мозгового кровотока, миелина, нервных механизмов управления движениями и нарушение движений при повреждении мозжечка.

    реферат , добавлен 13.04.2009

    Шизофрения и ее формы. Шизоаффективное расстройство. Онейроидная кататония. Ранняя детская шизофрения, ее симптомы. Факторы риска детской шизофрении. Клинические особенности шизофрении, варианты течения, характер основных расстройств, возможные исходы.