Закон бернулли простое объяснение. Уравнение бернулли

Рассмотрим ламинарное движение идеальной (то есть без внутреннего трения) несжимаемой жидкости в изогнутой трубке разного диаметра. Мы уже знаем, что из уравнения непрерывности жидкости S⋅v = const. Какие ещё можно сделать выводы?

Рассмотрим трубку разного сечения:

Возьмём срез жидкости в трубке. Из уравнения непрерывности следует, что при уменьшении сечения трубы увеличивается скорость потока жидкости. Если скорость увеличивается, значит по второму закону Ньютона действует сила F = m⋅a. Эта сила возникает за счет разности давления между стенками сечения потока жидкости. Значит сзади давление больше, чем спереди сечения. Это явление впервые описал Даниил Бернулли.

Закон Бернулли

В тех участках течения жидкости, где скорость больше давление меньше и наоборот.

Как любое тело, жидкость при перемещении совершает работу, т.е. выделяет энергию или поглощает. Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку.

Рассмотрим, какую работу совершает жидкость:

  • Работа давления жидкости (E P) . Давления жидкости выражается в том, что жидкость сзади давит на жидкость спереди.
  • Работа по перемещению жидкости на высоту h (E h) . При опускании жидкости эта работа отрицательная, при поднятии - положительная.
  • Работа по приданию скорости жидкости (E v) . При сужении трубки работа положительная, при расширении - отрицательная. Ещё это называют - кинетическая энергия или динамическое давление.

Так как мы рассматриваем идеальную жидкость, то трение отсутствует, а значит нет работы силы трения. Но в реальной жидкости она присутствует.

По закону сохранения энергии:

E p + E h + E v = const

Давайте теперь определим, чем равняется каждая из этих работ.

Работа давления жидкости (E P)

Формула давления имеет вид: P = F/S, F = P⋅S. Работа силы создающая давление:

E P = P⋅S⋅ΔL = P⋅V

Работа по перемещению жидкости на высоту h (E h)

Работа по перемещению жидкости на высоту h - это изменение потенциальной энергии которая равна:

E h = m⋅g⋅h = V⋅ρ⋅g⋅h

Работа по приданию скорости жидкости (E v)

Работа по приданию скорости жидкости - это кинетическая энергия, которая зависит от массы тела и его скорости и равна:

E k = m⋅v 2 /2 = V⋅ρ⋅v 2 /2

Получим формулу сохранения энергии жидкости:

P⋅V + V⋅ρ⋅g⋅h + V⋅ρ⋅v 2 /2 = const

Сократим каждое слагаемое на V. Получим уравнение:

Формула Бернулли

P + ρ⋅g⋅h + ρ⋅v 2 /2 = const

Разделим каждый член последнего уравнения ρ⋅g, получим

h + P  +  v 2  = const
ρ⋅g 2g

где h - геометрический напор, м;
P / ρ∙g - пьезометрический напор, м;
v 2 / 2g - скоростной напор, м.

Полученное уравнение называется уравнением Бернулли для элементарной струйки идеальной жидкости. Оно было получено Даниилом Бернулли в 1738 году.

Сумма трех членов уравнения называется полным напором.

Или можно сказать по-другому - для идеальной движущейся жидкости сумма трех напоров: геометрического, пьезометрического и скоростного есть величина постоянная вдоль струйки.

Какое отношение к авиации имеет закон Бернулли? Оказывается, самое прямое. С его помощью можно объяснить возникновение подъёмной силы крыла самолёта и других аэродинамических сил.

Закон Бернулли

Автор этого закона - швейцарский физик-универсал, механик и математик. Даниил Бернулли - сын известного швейцарского математика Иоганна Бернулли. В 1838 г. он опубликовал фундаментальный научный труд «Гидродинамика», в котором и вывел свой знаменитый закон.

Следует сказать, что в те времена аэродинамика как наука ещё не существовала. А закон Бернулли описывал зависимость скорости потока идеальной жидкости от давления. Но в начале ХХ века начала зарождаться авиация. И вот тут закон Бернулли оказался очень кстати. Ведь если рассматривать воздушный поток как несжимаемую жидкость, то этот закон справедлив и для воздушных потоков. С его помощью смогли понять, как поднять в воздух летательный аппарат тяжелее воздуха. Это важнейший законом аэродинамики, так как он устанавливает связь между скоростью движения воздуха и действующим в нём давлением, что помогает делать расчёты сил, действующих на летательный аппарат.

Закон Бернулли - это следствие закона сохранения энергии для стационарного потока идеальной и несжимаемой жидкости .

В аэродинамике воздух рассматривается как несжимаемая жидкость , то есть, такая среда, плотность которой не меняется с изменением давления. А стационарным считается поток, в котором частицы перемещаются по неизменным во времени траекториям, которые называют линиями тока. В таких потоках не образуются вихри.

Чтобы понять сущность закона Бернулли, познакомимся с уравнением неразрывности струи.

Уравнение неразрывности струи

Из него видно, что чем выше скорость течения жидкости (а в аэродинамике – скорость воздушного потока), тем меньше давление, и наоборот.

Эффект Бернулли можно наблюдать, сидя у камина. Во время сильных порывов ветра скорость воздушного потока возрастает, а давление падает. В комнате давление воздуха выше. И языки пламени устремляются вверх в дымоход.

Закон Бернулли и авиация

С помощью этого закона очень просто объяснить, как возникает подъёмная сила для летательного аппарата тяжелее воздуха.

Во время полёта крыло самолёта как бы разрезает воздушный поток на две части. Одна часть обтекает верхнюю поверхность крыла, а другая нижнюю. Форма крыла такова, что верхний поток должен преодолеть больший путь для того, чтобы соединиться с нижним в одной точке. Значит, он двигается с большей скоростью. А раз скорость больше, то и давление над верхней поверхностью крыла меньше, чем под нижней. За счёт разности этих давлений и возникает подъёмная сила крыла.

Во время набора самолётом высоты возрастает разница давлений, а значит, увеличивается и подъёмная сила, что позволяет самолёту подниматься вверх.

Сразу сделаем уточнение, что вышеописанные законы действуют, если скорость движения воздушного потока не превышает скорость звука (до 340 м/с). Ведь мы рассматривали воздух как несжимаемую жидкость. Но оказывается, что при скоростях выше скорости звука воздушный поток ведёт себя по-другому. Сжимаемостью воздуха пренебрегать уже нельзя. И воздух в этих условиях, как любой газ, старается расшириться и занять больший объём. Появляются значительные перепады давления или ударные волны. А сам воздушный поток не сужается, а, наоборот, расширяется. Решением задач о движении воздушных потоков со скоростями, близкими или превышающими скорость звука, занимается газовая динамика , возникшая как продолжение аэродинамики.

Используя аэродинамические законы, теоретическая аэродинамика позволяет сделать расчёты аэродинамических сил, действующих на летательный аппарат. А правильность этих расчётов проверяют, испытывая построенную модель на специальных экспериментальных установках, которые называются аэродинамическими трубами . Эти установки позволяют измерить величину сил специальными приборами.

Кроме исследования сил, действующих на аэродинамические модели, с помощью аэродинамических измерений изучают распределение значений скорости, плотности и температуры воздуха, обтекающего модель.

Для стабильно текущего потока (газа или жидкости) сумма кинетической и потенциальной энергии, давления на единицу объема является постоянной в любой точке этого потока.

Первое и второе слагаемое в Законе Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. А третье слагаемое в нашей формула является работой сил давления и не запасает какую-либо энергию. Из этого можно сделать вывод, что размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости или газа.

Постоянная в правой части уравнения Бернулли называется полным давлением и зависит в общих случаях, только от линии потока.

Если у вас горизонтальная труба, то Уравнение Бернулли принимает некий другой вид. Так как h=0, то потенциальная энергия будет равняться нулю, и тогда получится:

Из Уравнения Бернулли можно сделать один важный вывод . При уменьшении сечения потока возрастает скорость движения газа или жидкости (возрастает динамическое давление ), но в этот же момент уменьшает статическое давление следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает.

Давайте узнаем, как же летают самолеты. Даниил Бернулли объединил законы механики Ньютона с законом сохранения энергии и условием неразрывности жидкости, и смог вывести уравнение (), согласно которому давление со стороны текучей среды (жидкость или газ) падает с увеличением скорости потока этой среды. В случае с самолетом воздух обтекает крыло самолета снизу медленне, чем сверху. И благодаря этому эффекту обратной зависимости давления от скорости давление воздуха снизу, направленное вверх, оказывается больше давления сверху, напрвленного вниз. В результате, по мере набора самолетом скорости, возрастает направленная вверх разность давлений, и на крылья самолета действует нарастающая по мере разгона подъемная сила. Как только она начинает превышать силу гравитационного притяжения самолета к земле, самолет в буквальном смысле взмывает в небо. Эта же сила удерживает самолет в горизонтальном полете: на крейсерской скорости и высоте подъемная сила уравновешивает силу тяжести.

В Формуле мы использовали:

Плотность жидкости или воздуха

Как закон Всемирного Тяготения Ньютона действовал задолго до самого Ньютона, так и уравнение Бернулли существовало задолго до того, как родился сам Бернулли. Ему удалось лишь облечь это уравнение в наглядную форму, в чем его неоспоримая и огромная заслуга. Зачем мне уравнение Бернулли, спросите Вы, ведь я прекрасно жил и без него. Да, но оно может пригодиться Вам хотя бы на экзамене по гидравлике! Как говорится, «все не так уж плохо, если ты знаешь и можешь сформулировать уравнение Бернулли».

Кто такой Бернулли?

Даниил Бернулли – сын известного ученого Якоба Бернулли, швейцарский математик и физик. Жил с 1700 по 1782 годы, а с 1725 по 1733 трудился в Петербургской Академии наук. Помимо физики и математики Бернулли также изучал медицину наряду с Д’Аламбером и Эйлером считается отцом основателем математической физики. Успехи этого человека позволяют с уверенностью сказать, что это был настоящий «супермозг».

Д. Бернулли (1700-1782)

Идеальная жидкость и течение идеальной жидкости

Помимо известной нам материальной точки и идеального газа существует также идеальная жидкость . Какой-нибудь студент, конечно, может подумать, что эта жидкость – его любимое пиво или кофе, без которого невозможно жить. Но нет, идеальная жидкость – это жидкость, которая абсолютно несжимаема, лишена вязкости и теплопроводности. Тем не менее, такая идеализация дает вполне хорошее описание движения реальных жидкостей в гидродинамике.

Течением жидкости называется движение ее слоев относительно друг друга или относительно всей жидкости.

Помимо того есть разные режимы течения жидкости. Нас интересует тот случай, когда скорость потока в какой-то конкретной точке не меняется со временем. Такой поток называют стационарным. При этом скорость течения в различных точках стационарного потока может различаться.

– совокупность частиц движущейся жидкости.


Вывод уравнения Бернулли

Но как описать движение жидкости? Для этого нам нужно знать вектор скорости частиц, точнее зависимость его от времени. Совокупность скоростей в разных точках потока дает поле вектора скорости.

Рассмотрим стационарное течение жидкости по трубке. В одном месте сечение этой трубки равно S1, а в другой – S2. При стационарном потоке через оба сечения за одинаковый промежуток времени пройдет одинаковое количество жидкости.

Данное уравнение – уравнение неразрывности струи.


Узнав его, Бернулли решил установить связь между давлением и скоростью жидкости в разных сечениях. Полное давление – это сумма статистического (обусловлено потенциальной энергией жидкости) и динамического давлений (обусловлено кинетической энергией). Оказывается, сумма статического и динамического давлений в любом сечении трубы постоянна. Само же уравнение Бернулли имеет вид:

Смысл уравнения Бернулли

Физический смысл уравнения Бернулли. Уравнение Бернулли является следствием закона сохранения энергии. Первый член уравнения Бернулли – это кинетическая энергия, второе слагаемое уравнения Бернулли – потенциальная энергия в поле силы тяжести, третье – работа силы давления при подъеме жидкости на высоту h.

Вот и все, друзья, не так уж и страшно. Совсем немного времени, а Вы уже знаете уравнение Бернулли. Даже если Вы не знаете больше ничего, с этими знаниями идти на экзамен или зачет гораздо лучше, чем просто так. А если Вам необходима помощь в том, как решать задачи на уравнение Бернулли – не стесняйтесь и оформляйте заявку. После того как распишут решение уравнения Бернулли максимально подробно, у Вас не останется пробелов в знаниях.

Принцип Бернулли описывает поток жидкости. Он стал одним из самых ранних примеров сохранения энергии, известных людям. В нем говорится, что в установившемся потоке энергия в любой точке трубы представляет собой сумму величины динамического давления (V), весового (высотного; гидростатического) давления (Z) и статического давления (P). Она принимает форму уравнения сохранения, в которой сумма трех переменных всегда будет оставаться постоянной при отсутствии потерь или добавления энергии.

Энергия = V + Z + P = константа

Сумма трех слагаемых равна полному давлению. Первое слагаемое представляет собой кинетическую энергию, второе слагаемое потенциальную энергию сил тяжести, а третье потенциальную энергию сил давления. Полное давление будет оставаться постоянным, пока в систему не добавляется или из системы не отнимается дополнительная энергия.

1/2ρv 2 (динамическое давление) + ρgz (весовое давление) + P (статическое давление) = P общ = константа

где:
ρ = плотность
v = скорость потока
g = ускорение свободного падения
z = высота

P = давление

С помощью уравнения Бернулли также могут сравниваться давления в любых двух точках трубы с потоком жидкости. Еще раз, если не добавляется (не отнимается) энергия, сумма трех слагаемых в левой части будет равна сумме слагаемых в правой части.

(1/2ρv a 2 + ρgz a + P a) = (1/2ρv b 2 + ρgz b + P b)

где:
a и b – точки в разных местах трубы

Теория Бернулли в действии


На рисунке 1 показан принцип Бернулли в действии. Поток течет в горизонтальной трубе слева направо без потерь энергии на трение. Диаметр левой и правой части равен, а часть в центре составляет две трети от этого диаметра. Вертикальные трубки (пьезометрические трубки) слева и в центре выводятся в атмосферу, и уровень воды в них пропорционален статическому давлению (P) в этих зонах. Они измеряют статическое давление так же как и манометр. Обратите внимание, что измеренное давление в части с большим диаметром больше измеренного давления в суженной части. Этого можно ожидать, так как скорость в центральной части, очевидно, выше. В соответствии с уравнением Бернулли, давление уменьшается с увеличением скорости.

Рисунок 1. Горизонтальная труба с постоянным потоком слева направо без потерь энергии на трение

Тем не менее, нечто необычное происходит со статическим давлением (P), которое показано уровнем воды в вертикальной трубке справа. Можно было бы ожидать, что давление вернется к уровню как в левой пьезометрической трубке при отсутствии потерь на трение на суженном участке. Но уровень справа указывает на большее давление, и никакой дополнительной энергии в систему не добавляется. Оказывается, столбик справа – это трубка Пито. Это устройство измеряет давление иным способом – кроме статического давления, она также измеряет дополнительное давление, создаваемое скоростью потока.

Если бы клапан со стороны выхода потока был закрыт, и поток прекратился, все три вертикальные трубки показывали бы одинаковое статическое давление, независимо от формы и положения. После возобновления потока, статическое давление, измеряемое пьезометрическими трубками, будет соответствовать статическому давлению на определенном участке. Однако, в отличие от пьезометрической трубки, впускное отверстие трубки Пито направлено в сторону потока, при этом поток вталкивает в трубку большее количество воды. Когда вода перестает течь в трубку (застой), вертикальный уровень в ней максимальный и равен сумме статического и динамического давления. Давление, измеряемое трубкой Пито – это полное давление в трубе с потоком.

На рисунке 2 графически представлено Уравнение Бернулли. Оно часто используется при проектировании трубопроводов и систем с открытым каналом. Уравнение показывает влияние на гидравлическую систему при изменениях размера трубы, высоты, давления и при потерях на соединительных элементах и клапанах. Этот пример иллюстрирует давление в трех точках трубы с равномерным непрерывным потоком без изменения высоты.

Рисунок 2. Графическое представление уравнения Бернулли. Гидравлический градиент отражает изменение статического давления P из-за потерь на трения. Градиент энергии отражает изменение полного давления (V+P). Весовое давление (Z) в данном примере не влияет на полное давление, поскольку нет перепада высот.

Уровень воды в вертикальных трубках соответствует статическому давлению (P) в этих точках. Наклонная линия, соединяющая трубки, называется гидравлическим градиентом или пьезометрической линией. Наклонная линия выше гидравлического градиента, параллельная ему – это градиент энергии, который соответствует полному давлению в трубопроводе. Его можно измерить с помощью трубки Пито, либо рассчитать, используя скорость потока и уравнение для скоростного давления (1/2ρv 2).

Градиент энергии или напорная линия – это сумма скоростного напора и статического давления в любой точке. В этом примере скоростной напор остается постоянным в каждой точке, а гидростатический набор уменьшается в зависимости от полного трения в каждой точке. В более сложных примерах эти два градиента не параллельны друг другу, а будут перемещаться в обоих направлениях в зависимости от размера трубы, высоты и других факторов.

Принцип Бернулли работает, когда летит самолет или искривляется траектория полета вращающегося мяча. Этот принцип также справедлив для кораблей в море – корабли не должны проходить слишком близко друг от друга, так как повышенная скорость потока воды между ними создает зону с низким давлением, которая может привести к бортовому столкновению. По этой причине в больших доках стремятся устанавливать сваи, а не сплошные стенки. Наконец, существует эффект «занавески для ванной» (когда занавеска для ванной притягивается водой, текущей из душа).

В следующей статье мы изучим некую аналогичную работу, выполненную Джованни Вентури и Эванджелиста Торричелли, и увидим, как она расширила наше понимание гидравлики. Мы проиллюстрируем важность учета скоростного напора при испытаниях насосов в месте установки.

Материал подготовил Алексей Циммер