Зажимные механизмы станочных приспособлений. Основные элементы приспособлений. Направляющие элементы приспособлений

ЛЕКЦИЯ 3

3.1. Назначение зажимных устройств

Основное назначение зажимных устройств приспособлений - обеспечение надежного контакта (неотрывности) заготовки или собираемой детали с установочными элементами, предупрежде­ние ее смещения в процессе обработки или сборки.

Зажимной механизм создает силу для закрепления заготовки, определяемую из условия равновесия всех сил, приложенных к ней

При механической обработке на заготовку действуют:

1) силы и моменты резания

2) объемные силы - сила тяжести заготовки, центробежные и инерционные силы.

3) силы, действующие в точках контакта заготовки с приспособлением – сила реакции опоры и сила трения

4) второстепенные силы, к которым относятся силы, возника­ющие при отводе режущего инструмента (сверла, метчики, раз­вертки) от заготовки.

При сборке на собираемые детали действуют сборочные силы и силы реакции, возникающие в точках контакта сопрягаемых по­верхностей.

К зажимным устройствам предъявляются следующие требования :

1) при зажиме не должно нарушаться положение заготовки, до­стигнутое базированием. Это удовлетворяется рациональным вы­бором направления и мест приложения сил зажима;

2) зажим не должен вызывать деформации заготовок, закрепля­емых в приспособлении, или повреждения (смятия) их поверх­ностей;

3) сила зажима должна быть минимально необходимой, но дос­таточной для обеспечения фиксированного положения заготовки относительно установочных элементов приспособлений в процессе обработки;

4) сила зажима должна быть постоянной на всем протяжении технологической операции; сила зажима должна быть регулируемой;

5) зажим и открепление заготовки необходимо производить с ми­нимальной затратой сил и времени рабочего. При использовании ручных зажимов усилие не должно превышать 147 Н; Средняя продолжительность закрепления: в трехкулачковом патроне (ключом) - 4 с; винтовым зажимом (клю­чом) - 4,5…5 с; штурвалом - 2,5…3 с; поворотом рукоятки пневмо-, гидрокрана - 1,5 с; нажатием кнопки - менее 1 с.

6) зажимной механизм должен быть простым по конструкции, компактным, максимально удобным и безопасным в работе. Для этого он должен иметь минимальные габаритные размеры и содержать ми­нимальное число съемных деталей; устройство управления зажим­ным механизмом должно располагаться со стороны рабочего.

Необходимость применения зажимных устройств исключается в трех случаях .

1) заготовка имеет большую массу, по сравнению с которой силы резания малы.

2) силы, возникающие при обработке, направлены так, что не могут нарушить положение заготовки, достигнутое при базировании.

3) заготовка, установленная в приспособление, лишена всех сте­пеней свободы. Например, при сверлении отверстия в прямоугольной планке, закладываемой в ящичный кондуктор.



3.2. Классификация зажимных устройств

Конструкции зажимных устройств состоят из трех основных частей: контактного элемента (КЭ), привода (П) и силового механизма (СМ).

Контактные элементы служат для непосредственной передачи зажимного усилия на заготовку. Их конструкция позволяет рассредоточить усилия, предотвращая смятие поверхностей заготовки.

Привод служит для преобразования определенного вида энергии в исходное усилие Р и , передаваемое силовому механизму.

Силовой механизм необходим для преобразования полученного исходного зажимного усилия Р и в усилие зажима Р з . Преобразование производится механически, т.е. по законам теоретической механики.

В соответствии с наличием или отсутствием в приспособлении этих составных частей зажимные устройства приспособлений разделяются на три группы.

К первой группе относятся зажимные устройства (рис. 3.1а), имеющие в своем составе все перечисленные основные части: силовой механизм и привод, который обеспечивает перемещение контактного элемента и создает исходное усилие Р и , преобразуемое силовым механизмом в зажимное усилие Р з .

Во вторую группу (рис. 3.1б) входят зажимные устройства, состоящие лишь из силового механизма и контактного элемента, который приводится в действие непосредственно рабочим, прилагающим исходное усилие Р и на плече l . Эти устройства иногда называют зажимным устройством с ручным приводом (единичное и мелкосерийное производство).

К третьей группе относятся зажимные устройства, которые в своем составе не имеют силового механизма, а используемые приводы лишь условно можно назвать приводами, так как они не вызывают перемещений элементов зажимного устройства и только создают зажимное усилие Р з , которое в этих устройствах является равнодействующей равномерно распределенной нагрузки q , непосредственно действующей на заготовку и создаваемой либо в результате атмосферного давления, либо посредством магнитного силового потока. К этой группе относятся вакуумные и магнитные устройства (рис. 3.1в). Применяются во всех видах производства.

Рис. 3.1. Схемы зажимных механизмов

Элементарным зажимным механизмом называют часть зажимного устройства, состоящую из контактного элемента и силового механизма.

Зажимными элементами называют: винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, прижимы, планки. Они являются промежуточными звеньями в сложных зажимных системах.

В табл. 2 приведена классификация элементарных зажимных механизмов.

Таблица 2

Классификация элементарных зажимных механизмов

ЭЛЕМЕНТАРНЫЕ ЗАЖИМНЫЕ МЕХАНИЗМЫ ПРОСТЫЕ ВИНТОВЫЕ Зажимные винты
С разрезной шайбой или планкой
Штыковые или плунжерные
ЭКСЦЕНТРИКОВЫЕ Круглые эксцентрики
Криволинейные по эвольвенте
Криволинейные по спирали Архимеда
КЛИНОВЫЕ С плоским односкосым клином
С опорным роликом и клином
С двухскосым клином
РЫЧАЖНЫЕ Одноплечевые
Двухплечевые
Изогнутые двухплечевые
КОМБИНИРОВАННЫЕ ЦЕНТРИРУЮЩИЕ ЗАЖИМНЫЕ ЭЛЕМЕНТЫ Цанги
Разжимные оправки
Зажимные втулки с гидропластом
Оправки и патроны с пластинчатыми пружинами
Мембранные патроны
РЕЕЧНО-РЫЧАЖНЫЕ ЗАЖИМЫ С роликом зажимом и замком
С коническим запирающим устройством
С эксцентриковым запирающим устройством
КОМБИНИРОВАННЫЕ ЗАЖИМНЫЕ УСТРОЙСТВА Сочетание рычага и винта
Сочетание рычага и эксцентрика
Шарнирно-рычажный механизм
СПЕЦИАЛЬНЫЕ Многоместные и непрерывного действия

По источнику энергии привода (здесь говорится не о виде энергии, а именно о местонахождении источника) приводы делятся на ручные, механизирован­ные и автоматизированные. Ручные зажимные механизмы приводит в действие мускульная сила рабо­чего. Механизированные зажимные ме­ханизмы работают от пневматического или гидравлического привода. Автома­тизированные устройства перемещают­ся от движущихся узлов станка (шпин­деля, суппорта или патронов с кулач­ками). В последнем случае зажим заго­товки и разжим обработанной детали производится без участия рабочего.

3.3. Зажимные элементы

3.3.1. Винтовые зажимы

Винтовые зажимы применяют в приспособлениях с ручным закреплением заготовки, в приспособлениях механизированного типа, а также на автоматических линиях при использовании приспособлений-спутников. Они просты, компактны и надежны в работе.

Рис. 3.2. Винтовые зажимы :

а – со сферическим торцом; б – с плоским торцом; в – с башмаком. Условные обозначения: Р и - сила, приложенная на конце рукоятки; Р з - сила зажима;W – сила реакции опоры; l - длина рукоятки; d - диаметр винтового зажима.

Расчет винтового ЭЗМ. При известной си­ле Р 3 вычисляют номинальный диаметр винта

где d - диаметр винта, мм; Р 3 - сила закре­пления, Н; σ р - напряжение растяжения (сжа­тия) материала винта, МПа

Конструкции всех станочных приспособлений основываются на использовании типовых элементов, которые можно разделить на следующие группы:

установочные элементы, определяющие положение детали в приспособлении;

зажимные элементы - устройства и механизмы для крепления деталей или подвижных частей приспособлений;

элементы для направления режущего инструмента и контроля его положения;

силовые устройства для приведения в действие зажимных элементов (механические, электрические, пневматические, гидравлические);

корпуса приспособлений, на которых крепят все остальные элементы;

вспомогательные элементы, служащие для изменения положения детали в приспособлении относительно инструмента, для соединения между собой элементов приспособлений и регулирования их взаимного положения.

1.3.1 Типовые базирующие элементы приспособлений. Базирующими элементами приспособлений называются детали и механизмы, обеспечивающие правильное и однообразное расположение заготовок относительно инструмента.

Длительное сохранение точности размеров этих элементов и их взаимного расположения является важнейшим требованием при конструировании и изготовлении приспособлений. Соблюдение этих требований предохраняет от брака при обработке и сокращает время и средства, затрачиваемые на ремонт приспособления. Поэтому для установки заготовок не допускается непосредственное использование корпуса приспособления.

Базирующие или установочные элементы приспособления должны обладать высокой износоустойчивостью рабочих поверхностей и поэтому изготовляются из стали и подвергаются термической обработке для достижения необходимой поверхностной твердости.

При установке заготовка опирается на установочные элементы приспособлений, поэтому эти элементы называют опорами. Опоры можно разделить на две группы: группу основных и группу вспомогательных опор.

Основными опорами называются установочные или базирующие элементы, лишающие заготовку при обработке всех или нескольких степеней свободы в соответствии с требованиями к обработке. В качестве основных опор для установки заготовок плоскими поверхностями в приспособлениях часто используются штыри и пластины.

Рис. 12.

Штыри (рис. 12.) применяются с плоской, сферической и насеченной головкой. Штыри с плоской головкой (рис. 12, а) предназначены для установки заготовок обработанными плоскостями, вторые и третьи (рис. 12, б и в) для установки необработанными поверхностями, причем штыри со сферической головкой, как более изнашивающиеся, применяются в случаях особой необходимости, например, при установке заготовок узких деталей необработанной поверхностью для получения максимального расстояния между опорными точками. Штыри с насеченной головкой используют для установки деталей по необработанным боковым поверхностям, вследствие того, что они обеспечивают более устойчивое положение заготовки и поэтому в некоторых случаях позволяют использовать меньшее усилие для ее зажима.

В приспособлении штыри обычно устанавливают с посадкой с натягом по 7 квалитету точности в отверстия. Иногда в отверстие корпуса приспособления запрессовывают переходные закаленные втулки (рис. 12, а) в которые штыри входят с посадкой с небольшим зазором по 7 квалитету.

Наиболее распространенные конструкции пластин приведены на рис.13. Конструкция представляет собой узкую пластинку, закрепляемую двумя или тремя. Для облегчения перемещения заготовки, а также для безопасной очистки приспособления от стружки вручную рабочая поверхность пластинки окаймляется фаской под углом 45° (рис 13, а). Основные достоинства таких пластинок - простота и компактность. Головки винтов, крепящих пластинку, обычно утопают на 1-2 мм относительно рабочей поверхности пластины.

Рис. 13 Опорные пластины: а - плоские, б - с наклонными пазами.

При базировании заготовок по цилиндрической поверхности используется установка заготовки на призму. Призмой называется установочный элемент с рабочей поверхностью в виде паза, образованного двумя плоскостями, наклоненными друг к другу под углом (рис. 14). Призмы для установки коротких заготовок стандартизованы.

В приспособлениях используют призмы с углами б, равными 60°, 90° и 120°. Наибольшее распространение получили призмы с б =90

Рис. 14

При установке заготовок с чисто обработанными базами применяют призмы с широкими опорными поверхностями, а с черновыми базами -- с узкими опорными поверхностями. Кроме этого по черновым базам применяют точечные опоры, запрессованные в рабочие поверхности призмы (рис 15, б). В этом случае заготовки, имеющие искривленность оси, бочкообразность и другие погрешности формы технологической базы, занимают в призме устойчивое и определенное положение.

Рис.15

Вспомогательные опоры. При обработке нежестких заготовок часто применяют кроме установочных элементов дополнительные или подводимые опоры, которые подводят к заготовке после ее базирования по 6-ти точкам и закрепления. Число дополнительных опор и их расположение зависит от формы заготовки, места приложения сил и моментов резания .

1.3.2 Зажимные элементы и устройства. Зажимными устройствами или механизмами называют механизмы, устраняющие возможность вибрации или смещения заготовки относительно установочных элементов приспособления под действием собственного веса и сил, возникающих в процессе обработки (сборки).

Необходимость применения зажимных устройств исчезает в двух случаях:

1. Когда обрабатывают (собирают) тяжелую, устойчивую заготовку (сборочную единицу), по сравнению с весом которой силы механической обработки (сборки) малы;

2. Когда силы, возникающие при обработке (сборке) приложены так, что они не могут нарушить положение заготовки, достигнутое базированием.

К зажимным устройствам предъявляются следующие требования:

1. При зажиме не должно нарушаться положение заготовки, достигнутое базированием. Это удовлетворяется рациональным * выбором направления и точки приложения силы зажима.

2. Зажим не должен вызывать деформации закрепляемых в приспособлении заготовок или порчи (смятия) их поверхностей.

3. Сила зажима должна быть минимальной необходимой, но достаточной для обеспечения надежного положения заготовки относительно установочных элементов приспособлений в процессе обработки.

4. Зажим и открепление заготовки необходимо производить с минимальной затратой сил и времени рабочего. При использовании ручных зажимов усилие руки не должно превышать 147 Н (15 кгс).

5. Силы резания не должны, по возможности, воспринимать зажимные устройства.

6. Зажимной механизм должен быть простым по конструкции, максимально удобным и безопасным в работе.

Выполнение большинства этих требований связано с правильным определением величины, направления и места положения сил зажима.

Широкое распространение винтовых устройств объясняется их сравнительной простотой, универсальностью и безотказностью в работе. Однако простейший зажим в виде индивидуального винта, действующего на деталь непосредственно, применять не рекомендуется, так как в месте его действия деталь деформируется и, кроме того, под влиянием момента трения, возникающего на торце винта, может быть нарушено положение обрабатываемой детали в приспособлении относительно инструмента.

Правильно сконструированный простейший винтовой зажим, кроме винта 3 (рис. 16, а), должен состоять из направляющей резьбовой втулки 2 со стопором 5, предотвращающим произвольное ее вывинчивание, наконечника 1, и гайки с рукояткой или головкой 4.

Конструкции наконечников (рис. 16, б - д) отличаются от конструкции, изображенной на рис.18, а, большей прочностью конца винта, так как диаметр шейки винта для наконечников (рис. 16, б и д) может быть принят равным внутреннему диаметру резьбовой части винта, а для наконечников (рис. 16, в и г) этот диаметр может быть равен наружному диаметру винта. Наконечники (рис. 16, б-г) навинчиваются на резьбовой конец винта и так же, как наконечник, показанный на рис. 16, а, могут свободно само устанавливаться на обрабатываемой детали. Наконечник (рис. 16, д) свободно надевается на сферический конец винта и удерживается на нем с помощью специальной гайки.

Рис. 16.

Наконечники (рис. 16, е--з) отличаются от предыдущих тем, что они точно направляются с помощью отверстий в корпусе приспособления (или во втулке, запрессованной в корпус) и навинчиваются непосредственно на зажимной винт 15, который. в данном случае застопорен, чтобы предотвратить его осевые перемещения. Жесткие, точно направленные наконечники (рис. 16, е, ж и з) рекомендуется применять в случаях, когда в процессе обработки возникают силы, сдвигающие обрабатываемую деталь в направлении, перпендикулярном к оси винта. Качающиеся наконечники (рис. 16, а--д) следует применять в случаях, когда такие силы не возникают.

Рукоятки для управления винтом выполняют в виде съемных головок различной конструкции (рис. 17) и помещают на резьбовой, граненый или цилиндрический со шпонкой конец винта, на котором стопорятся обычно с помощью штифта. Цилиндрическая головка I (рис. 17, а) с накаткой «барашек» головка-звездочка II и четырехлопастная головка III используются при управлении винтом одной рукой и при силе зажима в пределах 50--100 Н (5--10 кг).

Головка-гайка VI с жестко закрепленной в ней короткой наклонной рукояткой; головка VII с откидной рукояткой, рабочее положение которой фиксируется подпружиненным шариком; головка V с цилиндрическим шпоночным отверстием, также жестко закрепленной горизонтальной рукояткой; штурвальная головка IV с четырьмя ввинченными или запрессованными рукоятками (рис. 17). Наиболее надежна и удобна в работе головка IV.

Рис. 17.

1.3.3 Корпуса. Корпуса приспособлений являются основной частью приспособлений, на которой крепят все остальные элементы. Он воспринимают все усилия, действующие на деталь при ее закреплении и обработке и обеспечивают заданное относительное расположение всех элементов и устройств приспособлений, объединяя их в единое целое. Корпуса приспособлений снабжают установочными элементами, которые обеспечивают базирование приспособления, т. е. требуемое его положение на станке без выверки.

Корпуса приспособлений делают литыми из чугуна, сварными из стали или сборными из отдельных элементов, скрепляемых болтами.

Поскольку корпус воспринимает силы, возникающие при закреплении и обработке заготовки, он должен быть прочным, жестким, износостойким, удобным для отвода СОЖ и очистки от стружки. Обеспечивая установку приспособления на станок без выверки, корпус должен сохранять устойчивость при различных положениях. Корпуса могут быть литыми, сварными, коваными, сборными на винтах или с гарантированным натягом.

Литой корпус (рис. 18, а) имеет достаточную жесткость, но отличается сложностью изготовления.

Корпуса из чугуна СЧ 12 и СЧ 18 применяют в приспособлениях для обработки заготовок мелких и средних размеров. Чугунные корпуса имеют преимущества перед стальными: они дешевле, им легче придать более сложную форму, их легче изготовить. Недостаток чугунных корпусов -- возможность коробления, поэтому после предварительной механической обработки их подвергают термической обработке (естественному или искусственному старению).

Сварной стальной корпус (рис. 18, б) менее сложный в изготовлении, но и менее жесткий, чем литой чугунный. Детали для таких корпусов вырезают из стали толщиной 8... 10 мм. Сварные стальные корпуса по сравнению с литыми чугунными имеют меньшую массу.

Рис. 18. Корпуса приспособлений: а - литой; б - сварной; в - сборный; г - кованый

Недостаток сварных корпусов -- деформация при сварке. Возникающие в деталях корпуса остаточные напряжения влияют на точность сварного шва. Для снятия этих напряжений корпуса подвергают отжигу. Для большей жесткости к сварным корпусам приваривают уголки, служащие ребрами жесткости.

На рис. 18, в показан сборный из различных элементов корпус. Он менее сложный, менее жесткий, чем литой или сварной и отличается низкой трудоемкостью изготовления. Корпус может быть разобран и использован полностью или отдельными деталями в других конструкциях.

На рис. 18, г показан корпус приспособления, изготовленный методом ковки. Его изготовление менее трудоемко, чем литого, при сохранении свойства жесткости. Кованые стальные корпуса применяют для обработки заготовок небольших размеров простой формы.

Важным для работы приспособления является качество изготовления их рабочих поверхностей. Они должны быть обработаны с шероховатостью поверхностей Rа 2,5 ... 1,25 мкм; допустимое отклонение от параллельности и перпендикулярности рабочих поверхностей корпусов -- 0,03. ..0,02 мм на длине 100 мм .

1.3.4 Ориентирующие и самоцентрирующие механизмы. В ряде случаев устанавливаемые детали необходимо ориентировать по их плоскостям симметрии. Применяемые для этой цели механизмы обычно не только ориентируют, но и зажимают детали, поэтому называются установочно-зажимными.

Рис. 19.

Установочно-зажимные механизмы делятся на ориентирующие и самоцентрирующие. Первые ориентируют детали только по одной плоскости симметрии, вторые -- по двум взаимно перпендикулярным плоскостям.

К группе самоцентрирующих механизмов относятся всевозможные конструкции патронов и оправок.

Для ориентирования и центрирования деталей некруглой формы часто используют механизмы с неподвижными (ГОСТ 12196--66), установочными (ГОСТ 12194--66) и подвижными (ГОСТ 12193--66) призмами. В ориентирующих механизмах одна из призм крепится жестко -- неподвижная или установочная, а вторая выполняется подвижной. В самоцентрирующих механизмах обе призмы перемещаются одновременно .

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Донбасская государственная академия строительства

и архитектуры

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по курсу "Технологические основы машиностроения" по теме "Расчет приспособлений"

Утверждена на заседании кафедры "Автомобили и автомобильное хозяйство" протокол №_ от 2005

Макеевка 2005

Методические указания к практическим занятиям по курсу "Технологические основы машиностроения" по теме "Расчет приспособлений" (для студентов специальности 7.090258 Автомобили и автомобильное хозяйство) / Сост. Д.В. Попов, Э.С. Савенко. - Макеевка: ДонГАСА, 2002. -24с.

Изложены основные сведения о станочных приспособлениях, конструкция, основные элементы, представлена методика расчета приспособлений.

Составители: Д.В. Попов, ассистент,

Э.С. Савенко, ассистент.

Ответственный за выпуск С.А. Горожанкин, доцент

Приспособления4

Элементы приспособлений5

    Установочные элементы приспособлений6

    Зажимные элементы приспособлений9

    Расчет сил для закрепления заготовок12

    Устройства для направления и определения положения 13 режущих инструментов

    Корпуса и вспомогательные элементы приспособлений14

Общая методика расчета приспособлений15

Расчет кулачковых патронов на примере точения16

Литература19

Приложения20

ПРИСПОСОБЛЕНИЯ

Все приспособления по технологическому признаку возможно разделить на следующие группы:

1. Станочные приспособления для установки и закрепления обрабатываемых заготовок в зависимости от вида механической обработки подразделяют на приспособления для токарных, сверлильных, фрезерных, шлифовальных, многоцелевых и других станков. Эти приспособления осуществляют связь заготовки со станком.

2. Станочные приспособления для установки и закрепления рабочего инструмента (их называют также вспомогательным инструментом) осуществляют связь между инструментом и станком. К ним относятся патроны для сверл, разверток, метчиков; многошпиндельные сверлильные, фрезерные, револьверные головки; инструментальные державки, блоки и т. п.

С помощью приспособлений указанных выше групп осуществляют наладку системы станок - заготовка - инструмент.

    Сборочные приспособления используют для соединения сопрягаемых деталей изделия, применяют для крепления базовых деталей, обеспечения правильной установки соединяемых элементов изделия, предварительной сборки упругих элементов (пружин, разрезных колец) и др.;

    Контрольные приспособления применяют для проверки отклонения размеров, формы и взаимного расположения поверхностей, сопряжении сборочных единиц и изделий, а также для контроля конструктивных параметров, получающихся в процессе сборки.

    Приспособления для захвата, перемещения и переворота тяжелых, а в автоматизированном производстве и ГПС и легких обрабатываемых заготовок и собираемых изделий. Приспособления являются рабочими органами промышленных роботов, встраиваемых в автоматизированных производствах и в ГПС.

К захватным приспособлениям предъявляют ряд требований:

надежность захвата и удержание заготовки; стабильность базирования; универсальность; высокая гибкость (легкая и быстрая переналадка); малые габаритные размеры и масса. В большинстве случаев применяют механические захватные устройства. Примеры схем схватов различных захватных устройств показаны на рис. 18.3. Широкое применение также находят захватные приспособления магнитные, вакуумные и с эластичными камерами.

Все описанные группы приспособлений в зависимости от типа производства могут быть ручными, механическими, полуавтоматическими и автоматическими, а в зависимости от степени специализации - универсальными, специализированными и специальными.

В зависимости от степени унификации и стандартизации в машиностроении и приборостроении в соответствии с требованиями Единой системы технологической подготовки производства (ЕСТПП) утверждено

семь стандартных систем станочных приспособлений.

В практике со временного производства сложились следующие системы приспособлений.

Универсально-сборные приспособления (УСП) компонуют из окончательно обработанных взаимозаменяемых стандартных универсальных элементов. Их используют в качестве специальных обратимых приспособлений кратковременного действия. Они обеспечивают установку и фиксацию различных деталей в пределахгабаритных возможностей комплекта УСП.

Специальные сборно-разборные приспособления (СРП) компонуют из стандартных элементов в результате дополнительной их механической обработки и используют как специальные необратимые приспособления долгосрочного действия из обратимых элементов.

Неразборные специальные приспособления (НСП) компонуют с применением стандартных деталей и узлов общего назначения как необратимые приспособления долгосрочного действия из необратимых деталей и узлов. Они состоят из двух частей: унифицированной базовой части и сменной насадки. Приспособления этой системы используют при ручной обработке деталей.

Универсально-безналадочные приспособления (УБП)-наиболее распространенная система в условиях серийного производства. Эти приспособления обеспечивают установку и фиксацию обрабатываемых деталей любых изделий малых и средних габаритов. При этом установка детали связана с необходимостью контроля и ориентации в пространстве. Такие приспособления обеспечивают выполнение широкой номенклатуры операций обработки.

Универсально-наладочные приспособления (УНП) обеспечиваютустановку при помощи специальных наладок, фиксацию обрабатываемых деталей малых и средних габаритов и выполнение широкой номенклатуры операций обработки.

Специализированные наладочные приспособления (СНП) обеспечивают по определенной схеме базирования при помощи специальных наладок и фиксацию родственных по конструкциям деталей для осуществления типовой операции. Все перечисленные системы приспособлений относятся к категории унифицированных.

ЭЛЕМЕНТЫ ПРИСПОСОБЛЕНИЙ

Основными элементами приспособлений являются установочные, зажимные, направляющие, делительные (поворотные), крепежные детали, корпуса и механизированные приводы. Их назначение следующее:

    установочные элементы - для определения положения обрабатываемой заготовки относительно приспособления и положения обрабатываемой поверхности относительно режущего инструмента;

    зажимные элементу - для закрепления обрабатываемой заготовки;

направляющие элементы - для осуществления требуемого направления движения инструмента;

    делительные или поворотные элементы - для точного изменения положения обрабатываемой поверхности заготовки относительно режущего инструмента;

    крепежные элементы - для соединения отдельных элементов между собой;

    корпуса приспособлений (как базовых деталей) - для размещения на них всех элементов приспособлений;

    механизированные приводы - для автоматического закрепления обрабатываемой заготовки.

К элементам приспособлений относятся также захватные устройства различных устройств (роботов, транспортных устройств ГПС) для захвата, зажима (разжима) и перемещения обрабатываемых заготовок или собираемых сборочных единиц.

1 Установочные элементы приспособлений

Установка заготовок в приспособлениях или на станках, а также сборка деталей включает в себя их базирование и закрепление.

Необходимость закрепления (силового замыкания) при обработке заготовки в приспособлениях очевидна. Для точной обработки заготовок необходимо: осуществлять ее правильное расположение по отношению к устройствам оборудования, определяющим траектории движения инструмента или самой заготовки;

обеспечивать постоянство контакта баз с опорными точками и полную неподвижность заготовки относительно приспособления в процессе ее обработки.

Для полной ориентации во всех случаях при закреплении заготовка должна быть лишена всех шести степеней свободы (правило шести точек в теории базирования); в некоторых случаях возможно отступление от этого правила.

С этой целью применяют основные опоры, число которых должно быть равно числу степеней свободы, которых лишается заготовка. Для повышения жесткости и виброустойчивости обрабатываемых заготовок в приспособлениях применяют вспомогательные регулируемые и самоустанавливающиеся опоры.

Для установки заготовки в приспособлении плоской поверхностью применяют стандартизованные основные опоры в виде штырей со сферической, насеченной и плоской головками, шайб, опорных пластин. Если невозможно установить заготовку только на основные опоры, применяют вспомогательные опоры. В качестве последних могут быть использованы стандартизованные регулируемые опоры в виде винтов со сферической опорной поверхностью и самоустанавливающиеся опоры.

Рисунок 1 Стандартизованные опоры:

а -е - постоянные опоры (штыри): а - плоская поверхность; б - сферическая; в - насеченная; г - плоская с установкой в переходную втулку; д - опорная шайба; е - опорная пластина; ж - регулируемая опора з -самоустанавливающаяся опора

Сопряжения опор со сферической, насеченной и плоской головками скорпусом приспособления выполняют по посадкеили . Применяютустановку таких опор и через промежуточные втулки, которые сопрягаются сотверстиями корпуса по посадке.

Примеры стандартизованных основных и вспомогательных опор приведены на рисунке 1.

Для установки заготовки по двум цилиндрическим отверстиям и перпендикулярной к их осям плоской поверхности применяют


Рисунок 2. Схема базирования по торцу и отверстию:

а – на высокий палец; б – на низкий палец


стандартизованные плоские опоры и установочные пальцы. Чтобы избежать заклинивания заготовок при установке их на пальцы по точным двум отверстиям (Д7) один из установочных пальцев должен быть срезанным, а другой - цилиндрическим.

Установка деталей на два пальца и плоскость нашла широкое применение при обработке заготовок на автоматических и поточных линиях, многоцелевых станках и в ГПС.

Схемы базирования по плоскости и отверстиям с применением установочных пальцев можно разделить на три группы: по торцу и отверстию (рис. 2); по плоскости, торцу и отверстию (рис. 3); по плоскости и двум отверстиям (рис. 4).

Рис. 19.4. Схема базирования по плоскости и двум отверстиям

Рекомендуется установка заготовки на один палец по посадке или , а на два пальца – по.

И
з рис.2 следует, что установка заготовки по отверстию на длинный цилиндрический несрезаный палец лишает еечетырех степеней свободы (двойная направляющая база), а установка на торец-одной степени свободы (опорная база). Установка заготовки на короткий палец лишает ее двух степеней свободы (двойная опорная база), но торец в этом случае является установочной базой и лишает заготовку трех степеней свободы. Для полного базирования необходимо создать силовое замыкание, т. е. приложить силы зажима. Из рис.3 следует, что плоскость основания заготовки является установочной базой, длинное отверстие, в которое входит срезанный палец с параллельной относительно плоскости осью, - направляющей базой (заготовка лишается двух степеней) и торец заготовки - опорной базой.

Рисунок.3. Схема базирования по плоскости, Рисунок 4 Схема базирования по

торцу и отверстию плоскости и двум отверстиям

На рис. 4 показана заготовка, которую устанавливают по плоскости и двум отверстиям. Плоскость является установочной базой. Отверстия, центрируемые цилиндрическим пальцем, являются двойной опорной базой, а срезанным - опорной базой. Приложенные силы (показаны стрелкой на рис. 3 и 4) обеспечивают точность базирования.

Пальцем, являются двойной опорной базой, а срезанным – опорной базой. Приложенные силы (показаны стрелкой на рис. 3 и 4) обеспечивают точность базирования.

Для установки заготовок наружной поверхностью и перпендикулярной к ее оси торцовой поверхностью применяют опорные и установочные призмы (подвижные и неподвижные), а также втулки и патроны.

К элементам приспособлений относятся установи и щупы для настройки станка на необходимый размер. Так, стандартизованные установы для фрез на фрезерных станках могут быть:

высотные, высотные торцовые, угловые и угловые торцовые.

Плоские щупы изготовляют толщиной 3-5 мм, цилиндрические - диаметром 3-5 мм с точностью по 6-му квалитету (h 6) и подвергают закалке 55-60 HRC 3 , шлифуют (параметр шероховатости Ra = 0,63 мкм).

Исполнительные поверхности всех установочных элементов приспособлений должны обладать большой износостойкостью и высокой твердостью. Поэтому их изготовляют из конструкционных и легированных сталей 20, 45, 20Х, 12ХНЗА с последующей цементацией и закалкой до 55-60 HRC3 (опоры, призмы, установочные пальцы, центры) и инструментальных сталей У7 и У8А с закалкой до 50-55 HRG, (опоры с диаметром меньше 12 мм; установочные пальцы с диаметром менее 16 мм; установы и щупы).

Основное назначение зажимных устройств приспособлений - обеспечение надежного контакта (неотрывности) заготовки или собираемой детали с установочными элементами, предупрежде­ние ее смещения в процессе обработки или сборки.

Рычажные зажимы. Рычажные зажимы (рисунок 2.16) применяют в сочетании с другими элементарными зажимами, образуя более сложные зажимные системы. Они позволяют изменять величину и направление передаваемой силы.

Клиновой механизм. Клин очень широко используют в зажимных механизмах приспособлений, этим обеспечивается простота и компактность конструкции, надежность в работе. Клин может быть как простым зажимным элементом, действующим непосредственно на заготовку, так и входить в сочетание с любым другим простым при создании комбинированных механизмов. Применение в зажимном механизме клина обеспечивает: увеличение исходной силы привода, перемену направления исходной силы, самоторможение механизма (способность сохранять силу зажима при прекращении действия силы , создаваемой приводом). Если клиновой механизм применяют для перемены направления силы зажима, то угол клина обычно равен 45°, а если для увеличения силы зажима или повышения надежности, то угол клина принимают равным 6…15° (углы самоторможения).

o механизмы с плоским односкосным клином (

o многоклиновые (многоплунжерные) механизмы;

o эксцентрики (механизмы с криволинейным клином);

o торцовые кулачки (механизмы с цилиндрическим клином).

11. Действие сил резания, зажимов и их моментов на обрабатываемую деталь

В процессе обработки режущий инструмент совершает определенные движения относительно заготовки. Поэтому требуемое расположение поверхностей детали можно обеспечить только в следующих случаях:



1) если заготовка занимает определенное положение в рабочей зоне станка;

2) если положение заготовки в рабочей зоне определено до начала обработки, на основе этого можно корректировать движения формообразования.

Точное положение заготовки в рабочей зоне станка достигается в процессе установки ее в приспособлении. Процесс установки включает в себя базирование (т.е. придание заготовке требуемого положения относительно выбранной системы координат) и закрепление (т.е. приложение сил и пар сил к заготовке для обеспечения постоянства и неизменности ее положения, достигнутого при базировании).

Фактическое положение заготовки, установленной в рабочей зоне станка, отличается от требуемого, что обусловливается отклонением положения заготовки (в направлении выдерживаемого размера) в процессе установки. Это отклонение называют погрешностью установки, которая состоит из погрешности базирования и погрешности закрепления.

Поверхности, принадлежащие заготовке и используемые при ее базировании, называют технологическими базами, а используемые для ее измерений - измерительными базами.

Для установки заготовки в приспособлении обычно используют несколько баз. Упрощенно считают, что заготовка соприкасается с приспособлением в точках, называемых опорными. Схему расположения опорных точек называют схемой базирования. Каждая опорная точка определяет связь заготовки с выбранной системой координат, в которой осуществляется обработка заготовки.

1. При высоких требованиях к точности обработки в качестве технологической базы следует использовать точно обработанную поверхность заготовки и принять такую схему базирования, которая обеспечивает наименьшую погрешность установки.

2. Одним из самых простых способов повышения точности базирования является соблюдение принципа совмещения баз.



3. Для повышения точности обработки следует соблюдать принцип постоянства баз. Если это невозможно по каким-либо причинам, то необходимо, чтобы новые базы были обработаны точнее предшествующих.

4. В качестве баз следует использовать простые по форме поверхности (плоские, цилиндрические и конические), из которых при необходимости можно создать комплект баз. В тех случаях, когда поверхности заготовки не удовлетворяют требованиям, предъявляемым к базам (т.е. по своим размерам, форме и расположению не могут обеспечить заданную точность, устойчивость и удобство обработки), на заготовке создают искусств венные базы (центровые отверстия, технологические отверстия, платики, выточки и др.).

Основные требования к закреплению заготовок в приспособлениях следующие.

1. Закрепление должно обеспечить надежный контакт заготовки с опорами приспособлений и гарантировать неизменность положения заготовки относительно технологической оснастки в процессе обработки или при отключении энергии.

2. Закрепление заготовки необходимо применять только в тех случаях, когда сила обработки или другие силы могут сместить заготовку (например, при протягивании шпоночного паза заготовку не закрепляют).

3. Силы закрепления не должны вызывать больших деформаций и смятия базы.

4. Закрепление и освобождение заготовки должны выполняться с минимальной затратой времени и усилий со стороны рабочего. Наименьшую погрешность закрепления обеспечивают зажимные устройства, создающие

постоянную силу закрепления (например, приспособления с пневматическим или гидравлическим приводом).

5. Для уменьшения погрешности закрепления следует использовать базовые поверхности с низкой шероховатостью; применять приспособления с приводом; устанавливать заготовки на опоры с плоской головкой или на точно обработанные опорные пластины.

Билет 13

Зажимные механизмы приспособлений Зажимными называют механизмы, устраняющие возможность вибрации или смещения заготовки относительно установочных элементов под действием собственного веса и сил, возникающих в процессе обработки (сборки). Основное назначение зажимных устройств – обеспечение надежного контакта заготовки с установочными элементами, предупреждение ее смещения и вибраций в процессе обработки, а также для обеспечения правильной установки и центрирования заготовки.

Расчет сил зажима

Расчет сил зажима может быть сведен к решению задачи статики на равновесие твердого тела (заготовки) под действием системы внешних сил.

К заготовке с одной стороны приложены сила тяжести и силы, возникающие в процессе обработки, с другой – искомые зажимные силы – реакции опор. Под действием этих сил заготовка должна сохранить равновесие.

Пример 1. Сила закрепления прижимает заготовку к опорам приспособления, а сила резания , возникающая при обработке деталей, (рисунок 2.12,а) стремится сдвинуть заготовку вдоль опорной плоскости.

На заготовку действуют силы: на верхней плоскости сила зажима и сила трения , препятствующая сдвигу заготовки; по нижней плоскости силы реакции опор (на рисунке не показаны) равные силе зажима и сила трения между заготовкой и опорами . Тогда уравнение равновесия заготовки будет

,

где – коэффициент запаса;

– коэффициент трения между заготовкой и зажимным механизмом;

– коэффициент трения между заготовкой и опорами приспособления.

Откуда

Рисунок 2.12 – Схемы для расчета сил зажима

Пример 2. Сила резания направлена под углом к силе закрепления (рисунок 2.12,б).

Тогда уравнение равновесия заготовки будет

Из рисунок 2.12,б найдем составляющие усилия резания

Подставляя, получим

Пример 3. Заготовка обрабатывается на токарном станке и закрепляется в трехкулачковом патроне. Силы резания создают крутящий момент , стремящиеся провернуть заготовку в кулачках. Силы трения, возникающие в точках контакта кулачков с заготовкой, создают момент трения , препятствующий повороту заготовки. Тогда условие равновесия заготовки будет

.

Момент резания определится по величине вертикальной составляющей силы резания

.

Момент трения

.

Элементарные зажимные механизмы

К элементарным зажимным устройствам относятся простейшие механизмы, используемые для закрепления заготовок или выполняющие роль промежуточных звеньев в сложных зажимных системах:

винтовые;

клиновые;

эксцентриковые;

рычажные;

центрирующие;

реечно-рычажные.

Винтовые зажимы. Винтовые механизмы (рисунок 2.13) широко используются в приспособлениях с ручным закреплением заготовок, с механизированным приводом, а также на автоматических линиях при использовании приспособлений-спутников. Достоинством их является простота конструкции, невысокая стоимость и высокая надежность в работе.

Винтовые механизмы используют как для непосредственного зажима, так и в сочетании с другими механизмами. Силу на рукоятке, необходимую для создания силы зажима , можно рассчитать по формуле:

,

где – средний радиус резьбы, мм;

– вылет ключа, мм;

– угол подъема резьбы;

Угол трения в резьбовой паре.

Клиновой механизм. Клин очень широко используют в зажимных механизмах приспособлений, этим обеспечивается простота и компактность конструкции, надежность в работе. Клин может быть как простым зажимным элементом, действующим непосредственно на заготовку, так и входить в сочетание с любым другим простым при создании комбинированных механизмов. Применение в зажимном механизме клина обеспечивает: увеличение исходной силы привода, перемену направления исходной силы, самоторможение механизма (способность сохранять силу зажима при прекращении действия силы , создаваемой приводом). Если клиновой механизм применяют для перемены направления силы зажима, то угол клина обычно равен 45°, а если для увеличения силы зажима или повышения надежности, то угол клина принимают равным 6…15° (углы самоторможения).

Клин применяют в следующих конструктивных вариантах зажимов:

механизмы с плоским односкосным клином (рисунок 2.14,б);

многоклиновые (многоплунжерные) механизмы;

эксцентрики (механизмы с криволинейным клином);

торцовые кулачки (механизмы с цилиндрическим клином).

На рисунок 2.14,а приведена схема двууглового клина.

При зажиме заготовки клин под действием силы движется влево, При движении клина на его плоскостях возникают нормальные силы и силы трения и (рисунок 2.14,б).

Существенным недостатком рассмотренного механизма является низкий коэффициент полезного действия (КПД) из-за потерь на трение.

Пример использования клина в приспособлении показан на
рисунке 2.14,г.

Для повышения КПД клинового механизма трение скольжения на поверхностях клина заменяют трением качения, применяя опорные ролики (рис 2.14, в).

Многоклиновые механизмы бывают с одним, двумя или большим числом плунжеров. Одно- и двуплунжерные применяют как зажимные; многоплунжерные используют как самоцентрирующие механизмы.

Эксцентриковые зажимы. Эксцентрик представляет собой соединение в одной детали двух элементов – круглого диска (рисунок 2.15,д) и плоского односкосого клина. При повороте эксцентрика вокруг оси вращения диска, клин входит в зазор между диском и заготовкой и развивает силу зажима .

Рабочая поверхность эксцентриков может быть окружностью (круговые) или спиралью (криволинейные)..

Эксцентриковые зажимы являются самими быстродействующими из всех ручных зажимных механизмов. По быстродействию они сравнимы с пневмозажимами.

Недостатками, эксцентриковых зажимов являются:

малая величина рабочего хода;

ограниченная величиной эксцентриситета;

повышенная утомляемость рабочего, так как при откреплении заготовки рабочему необходимо прикладывать силу, обусловленную свойством самоторможения эксцентрика;

ненадежность зажима при работе инструмента с ударами или_вибрациями, так как это может привести к самооткреплению заготовки.

Несмотря на эти недостатки эксцентриковые зажимы широко используют в приспособлениях (рисунок 2.15,б), особенно в мелкосерийном и среднесерийном производствах.

Для достижения необходимой силы закрепления определим наибольший момент на рукоятке эксцентрика

где – сила на рукоятке,

– длина рукоятки;

– угол поворота эксцентрика;

– углы трения.

Рычажные зажимы. Рычажные зажимы (рисунок 2.16) применяют в сочетании с другими элементарными зажимами, образуя более сложные зажимные системы. Они позволяют изменять величину и направление передаваемой силы.

Конструктивных разновидностей рычажных зажимов много, однако, все они сводятся к трем силовым схемам, показанным на рисунке 2.16, где приведены также формулы расчета необходимой величины усилия для создания силы зажима заготовки для идеальных механизмов (без учета сил трения). Это усилие определяется из условия равенства нулю моментов всех сил относительно точки вращения рычага. На рисунке 2.17 показаны конструктивные схемы рычажных зажимов.

При выполнении ряда операций механической обработки жёсткость режущего инструмента и всей технологической системы в целом оказывается недостаточной. Для устранения отжатий и деформаций инструмента используются различные направляющие элементы. Основные требования к таким элементам: точность, износостойкость, сменность. Такие приспособления называются кондукторами или кондукторными втулками и используются при сверлильных и расточных работах.

Конструкции и размеры кондукторных втулок для сверления стандартизованы (рис. 11.10). Втулки бывают постоянными (рис. 11.10 а) и сменными

Рис. 11.10. Конструкции кондукторных втулок: а) постоянные;

б) сменные; в) скороссменные с замком

(рис. 11.10 б). Постоянные втулки используют в единичном производстве при обработке одним инструментом. Сменные втулки используют в серийном и массовом производстве. Быстросменные втулки с замком (рис. 11.10 в) используют при обработке отверстий несколькими последовательно сменяемыми инструментами.

При диаметре отверстия до 25 мм втулки изготавливают из стали У10А, с закалкой до 60…65. При диаметре отверстия более 25 мм втулки изготавливают из стали 20 (20Х), с последующей цементацией и закалкой на ту же твёрдость.

Если инструменты направляются во втулке не рабочей частью, а цилиндрическими центрирующими участками, то используются специальные втулки (рис. 11.11). На рис. 11.11 а показана втулка для сверления отверстий на накло-

15. Настроечные элементы приспособлений.

-Настроечные элементы (высотные и угловые установы) применяют для контроля положения инструмента при настройке станка.)

- Настроечные элементы , обеспечивающие правильное положение режущего инструмента при наладке (настройке) станка для получения заданных размеров. Такими элементами являются высотные и угловые установы фрезерных приспособлений , применяемые для контроля положения фрезы при наладке и подналадке станка.Их применение облегчает и ускоряет наладку станка при обработке заготовок методом автоматического получения заданных размеров

Настроечные элементы выполняют следующие функции : 1) Предотвращают увод инструмента во время работы. 2) Придают инструменту точное положение относительно приспособления, к ним относятся установы (габариты), копиры. 3) Выполняют обе функции изложенные выше, к ним относятся кондукторные втулки, направляющие втулки. Кондукторные втулки прим.при об-ке отверстий свёрлами, зенкерами, развёртками. Кондукторные втулки бывают: постоянные, быстросменные и сменные. Постяные с буртиком и без прим-ся когда отверстие обраб.одним инструментом. Они запрессовываются в части корпуса- кондукторной плиты Н7/n6. Сменые втулки применяются при обработке одним инструментом но с учётом замены вследствии износа. Быстросменые прим.когда отверстие на операции обрабатывается последовательно несколькими инструментами. Отличаются от сменных сквозным пазом в буртике. Применяются и спец.кондукторные втулки, имеющие конструкцию соответствующую особенностям заготовки и операции. Удлиненная втулка Втулка с наклонным торцем Втулки направляющие выполняющие только функцию предотвращения увода инструмента выполняются постоянными. Напр на револверных станках она устанавливается в отверстие шпинделя и вращается с ним. Отверстие в направляющие втулки выполняется по Н7. Копиры-используются для точного расположения инструмента относительно приспособления при обработке криволинейных поверхностей. Копиры бывают накладные и встроенные. Накладные накладываются на заготовку и закрепляются вместе с ней. Направляющая часть инструм.имеет непрерывный контакт с Копиром, а режущая часть выполняет требуемый профиль. Встроеные копиры устанавливаются на корпус приспособления. По копиру направляется копирный палец, который через специально встроенное устройство в станок передает шпинделю с инструментом соотв.движение для обработки криволинейного профиля. Установы бывают стандартные и специальные, высотные и угловые. Высотные установы ориентируют инструмент в одном направлении, угловые по 2 направлениям. Координация инструмента по установам производится производится с помощью стандартных щупов плоских толщиной 1,3,5 мм или цилиндрических диаметром3 или 5мм. Располагаются установы на корпусе приспособления в стороне от заготовки с учётом врезания инструмента и закрепляются винтами и фиксируются штифтами. Об используемом щупе для настройки инструмента по установу на сборочном чертеже приспособления указывается в тех.требованиях, допускается и графически.

Для установки (наладки) положения стола станка вместе с приспособлением относительно режущего инструмента применяются специальные шаблоны-установы, выполненные в виде различных по форме пластин, призм и угольников. Установы закрепляются на корпусе приспособления; их эталонные поверхности должны быть расположены ниже обрабатываемых поверхностей заготовки, чтобы не мешать проходу режущего инструмента. Чаще всего установы применяют при обработке на фрезерных станках, настроенных на автоматическое получение размеров заданной точности.

Различают высотные и угловые установы. Первые служат для правильного расположения детали относительно фрезы по высоте, вторые – и по высоте и в боковом направлении. Изготовляются из стали 20Х, с цементацией на глубину 0,8 – 1,2 мм с последующей закалкой до твердости HRC 55…60 ед.

Настроечные элементы для режущего инструмента (пример)

Комплексное проведение производственных исследований точности работы действующих автоматических линий, экспериментальных исследований и теоретического анализа должно дать ответы на следующие основные вопросы проектирования технологических процессовпроизводства корпусных деталей на автоматических линиях а) обоснование для выбора технологических методов и числа последовательно выполняемых переходов для обработки наиболее ответственныхповерхностей деталей с учетом заданных требований точности б) установление оптимальной степени концентрации переходов в одной позиции, исходя из условий нагружения и требуемой точности обработки в)выбор методов и схем установки при проектировании установочных элементов приспособлений автоматических линий для обеспечения точности обработки г) рекомендации по применению и проектированию узлов автоматических линий, обеспечивающих направление и фиксациюрежущих инструментов в связи с требованиями точности обработки д)выбор методов настройки станков на требуемые размеры и выбор контрольных средств для надежного поддержания настроечного размера е) обоснование требований к точности станков и к точности сборки автоматической линии по параметрам, оказывающим непосредственное влияние на точность обработки ж) обоснование требований к точности черных заготовок в связи с точностью их установки и уточнением в ходе обработки, а также установление нормативных величин для расчета припусков на обработку з) выявление и формирование методических положений для точностных расчетов при проектировании автоматических линий.

16. Пневматические приводы. Назначение и требования, предъявляемые к ним.

Пневматический привод (пневмопривод) - совокупность устройств, предназначенных для приведения в движение частей машин и механизмов посредством энергии сжатого воздуха.

Пневмопривод, подобно гидроприводу, представляет собой своего рода «пневматическую вставку» междуприводным двигателем и нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача, кривошипно-шатунный механизм и т. д.). Основное назначение пневмопривода , как и механической передачи, - преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.). Обязательными элементами пневмопривода являются компрессор (генератор пневматической энергии) и пневмодвигатель

В зависимости от характера движения выходного звена пневмодвигателя (вала пневмомотора или штокапневмоцилиндра), и соответственно, характера движения рабочего органа пневмопривод может быть вращательным или поступательным. Пневмоприводы с поступательным движением получили наибольшее распространение в технике.

Принцип действия пневматических машин

В общих чертах, передача энергии в пневмоприводе происходит следующим образом:

1. Приводной двигатель передаёт вращающий момент на вал компрессора, который сообщает энергию рабочему газу.

2. Рабочий газ после специальной подготовки по пневмолиниям через регулирующую аппаратуру поступает в пневмодвигатель, где пневматическая энергия преобразуется в механическую.

3. После этого рабочий газ выбрасывается в окружающую среду, в отличие от гидропривода, в котором рабочая жидкость по гидролиниямвозвращается либо в гидробак, либо непосредственно к насосу.

Многие пневматические машины имеют свои конструктивные аналоги среди объёмных гидравлических машин. В частности, широко применяются аксиально-поршневые пневмомоторы и компрессоры, шестерённые и пластинчатые пневмомоторы, пневмоцилиндры…

Типовая схема пневмопривода

Типовая схема пневмопривода: 1 - воздухозаборник; 2 - фильтр; 3 - компрессор; 4 - теплообменник (холодильник); 5 -влагоотделитель; 6 - воздухосборник (ресивер); 7 -предохранительный клапан; 8- Дроссель; 9 - маслораспылитель; 10 - редукционный клапан; 11 - дроссель; 12 - распределитель; 13 пневмомотор; М - манометр.

Воздух в пневмосистему поступает через воздухозаборник.

Фильтр осуществляет очистку воздуха в целях предупреждения повреждения элементов привода и уменьшения их износа.

Компрессор осуществляет сжатие воздуха.

Поскольку, согласно закону Шарля, сжатый в компрессоре воздух имеет высокую температуру, то перед подачей воздуха потребителям (как правило, пневмодвигателям) воздух охлаждают в теплообменнике (в холодильнике).

Чтобы предотвратить обледенение пневмодвигателей вследствие расширения в них воздуха, а также для уменьшения корозии деталей, в пневмосистеме устанавливаютвлагоотделитель.

Ресивер служит для создания запаса сжатого воздуха, а также для сглаживания пульсаций давления в пневмосистеме. Эти пульсации обусловлены принципом работы объёмных компрессоров (например, поршневых), подающих воздух в систему порциями.

В маслораспылителе в сжатый воздух добавляется смазка, благодаря чему уменьшается трение между подвижными деталями пневмопривода и предотвращает их заклинивание.

В пневмоприводе обязательно устанавливается редукционный клапан, обеспечивающий подачу к пневмодвигателям сжатого воздуха при постоянном давлении.

Распределитель управляет движением выходных звеньев пневмодвигателя.

В пневмодвигателе (пневмомоторе или пневмоцилиндре) энергия сжатого воздуха преобразуется в механическую энергию.

Пневмаприводами оснащаются:

1. стационарные приспособления, закрепляемые на столах фрезерных, сверлильных и других станков;

2. вращающиеся приспособления - патроны, оправки и т.д.

3) приспособления, устанавливаемые на вращающихся и делительных столах при непрерывной и позиционной обработке.

В качестве рабочего органа применяются пневматические камеры одностороннего и двухстороннего действия.

При двухстороннем действии поршень перемещается в обе стороны сжатым воздухом.

При одностороннем действии поршень во время закрепления заготовки перемещается сжатым воздухом, а при раскреплении пружиной.

Для увеличения силы закрепления применяются двух и трёхпоршневые цилиндры или двух и трёхкамерные пнемакамеры. При этом усилие зажатия увеличивается в 2.. .3 раза

Увеличения силы закрепления можно добиться встраиванием в пнемапривод рычагов усилителей.

Необходимо отметить некоторые преимущества пневматических приводов приспособлений.

По сравнению с гидроприводом он отличается чистотой, не нужно иметь гидростанции для каждого приспособления, если станок на котором установлено приспособление не снабжён гидростанцией.

Пневмапривод характерен быстротой действия, он превосходит не только ручные, но многие механизированные приводы. Если например, скорость течения масла, находящегося под давлением в трубопроводе гидравлического устройства, составляет 2,5....4,5 м/сек, максимально возможная - 9м/сек, то воздух, находясь по давлением 4...5 МПа, распространяется по трубопроводам со скоростью до 180 м/сек и более. Поэтому в течении 1 часа возможно осуществить до 2500 срабатываний пневмапривода.

К преимуществам пневмапривода следует отнести то, что его работоспособность не зависит от колебаний температуры окружающей среды. Большое преимущество состоит в том, что пневмапривод обеспечивают непрерывное действие зажимной силы, следствии чего эта сила может значительно меньше чем при ручном приводе. Это обстоятельство весьма существенно при обработке тонкостенных заготовок, склонных к деформации при закреплении.

Достоинства

· в отличие от гидропривода - отсутствие необходимости возвращать рабочее тело (воздух) назад к компрессору;

· меньший вес рабочего тела по сравнению с гидроприводом (актуально для ракетостроения);

· меньший вес исполнительных устройств по сравнению с электрическими;

· возможность упростить систему за счет использования в качестве источника энергии баллона со сжатым газом, такие системы иногда используют вместо пиропатронов, есть системы, где давление в баллоне достигает 500 МПа;

· простота и экономичность, обусловленные дешевизной рабочего газа;

· быстрота срабатывания и большие частоты вращения пневмомоторов (до нескольких десятков тысяч оборотов в минуту);

· пожаробезопасность и нейтральность рабочей среды, обеспечивающая возможность применения пневмопривода в шахтах и на химических производствах;

· в сравнении с гидроприводом - способность передавать пневматическую энергию на большие расстояния (до нескольких километров), что позволяет использовать пневмопривод в качестве магистрального в шахтах и на рудниках;

· в отличие от гидропривода, пневмопривод менее чувствителен к изменению температуры окружающей среды вследствие меньшей зависимости КПДот утечек рабочей среды (рабочего газа), поэтому изменение зазоров между деталями пневмооборудования и вязкости рабочей среды не оказывают серьёзного влияния на рабочие параметры пневмопривода; это делает пневмопривод удобным для использования в горячих цехах металлургических предприятий.

Недостатки

· нагревание и охлаждение рабочего газа в процессе сжатия в компрессорах и расширения в пневмомоторах; этот недостаток обусловлен законами термодинамики, и приводит к следующим проблемам:

· возможность обмерзания пневмосистем;

· конденсация водяных паров из рабочего газа, и в связи с этим необходимость его осушения;

· высокая стоимость пневматической энергии по сравнению с электрической (примерно в 3-4 раза), что важно, например, при использовании пневмопривода в шахтах;

· ещё более низкий КПД, чем у гидропривода;

· низкие точность срабатывания и плавность хода;

· возможность взрывного разрыва трубопроводов или производственного травматизма, из-за чего в промышленном пневмоприводе применяются небольшие давления рабочего газа (обычно давление в пневмосистемах не превышает 1 МПа, хотя известны пневмосистемы с рабочим давлением до 7 МПа - например, на атомных электростанциях), и, как следствие, усилия на рабочих органах значительно ме́ньшие в сравнении с гидроприводом). Там, где такой проблемы нет (на ракетах и самолетах) или размеры систем небольшие, давления могут достигать 20 МПа и даже выше.

· для регулирования величины поворота штока привода необходимо использование дорогостоящих устройств - позиционеров.

96kb. 15.03.2009 00:15 225kb. 27.02.2007 09:31 118kb. 15.03.2009 01:57 202kb. 15.03.2009 02:10 359kb. 27.02.2007 09:33 73kb. 27.02.2007 09:34 59kb. 27.02.2007 09:37 65kb. 31.05.2009 18:12 189kb. 13.03.2010 11:25

3 Зажимные элементы приспособлений.doc

3. Зажимные элементы приспособлений

3.1. Выбор места приложения зажимных усилий, вида и количества зажимных элементов

При закреплении заготовки в приспособлении должны соблюдаться следующие основные правила:


  • не должно нарушаться положение заготовки достигнутое при ее базировании;

  • закрепление должно быть надежным, чтобы во время обработки положение заготовки сохранялось неизменным;

  • возникающие при закреплении смятие поверхностей заготовки, а также ее деформация должны быть минимальными и находиться в допустимых пределах.

  • для обеспечения контакта заготовки с опорным элементом и устранения возможного его сдвига при закреплении зажимное усилие следует направлять перпендикулярно к поверхности опорного элемента. В отдельных случаях зажимное усилие можно направлять так, чтобы заготовка одновременно прижималась к поверхностям двух опорных элементов;

  • в целях устранения деформации заготовки при закреплении точку приложения зажимного усилия надо выбирать так, чтобы линия его действия пересекала опорную поверхность опорного элемента. Лишь при закреплении особо жестких заготовок можно допускать, чтобы линия действия зажимного усилия проходила между опорными элементами.
3.2. Определение количества точек приложения зажимных усилий

Количество точек приложения зажимных усилий определяется конкретно к каждому случаю зажима заготовки. Для уменьшения смятия поверхностей заготовки при закреплении необходимо уменьшать удельное давление в местах контакта зажимного устройства с заготовкой путем рассредоточения зажимного усилия.

Это достигается применением в зажимных устройствах контактных элементов соответствующей конструкции, которые позволяют распределить зажимное усилие поровну между двумя или тремя точками, а иногда даже рассредоточить по некоторой протяженной поверхности. Количество точек зажима во многом зависит от вида заготовки, метода обработки, направления силы резания. Для уменьшения вибраций и деформаций заготовки под действием силы резания следует повышать жесткость системы заготовка-приспособление путем увеличения числа мест зажатия заготовки и приближения их к обрабатываемой поверхности.

3.3. Определение вида зажимных элементов

К зажимным элементам относятся винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, прижимы, планки.

Они являются промежуточными звеньями в сложных зажимных системах.

3.3.1. Винтовые зажимы

Винтовые зажимы применяют в приспособлениях с ручным закреплением заготовки, в приспособлениях механизированного типа, а также на автоматических линиях при использовании приспособлений-спутников. Они просты, компактны и надежны в работе.

Рис. 3.1. Винтовые зажимы: а – со сферическим торцем; б – с плоским торцем; в – с башмаком.

Винты могут быть со сферическим торцем (пятой), плоским и с башмаком, предупреждающим порчу поверхности.

При расчете винтов со сферической пятой учитывается только трение в резьбе.

Где: L - длина рукоятки, мм; - средний радиус резьбы, мм; - угол подъема резьбы.

Где: S – шаг резьбы, мм; – приведенный угол трения.

Где: Pu150 Н.

Условие самоторможения: .

Для стандартных метрических резьб , поэтому все механизмы с метрической резьбой самотормозящие.

При расчете винтов с плоской пятой учитывается трение на торце винта.

Для кольцевой пяты:

Где: D – наружный диаметр опорного торца, мм; d – внутренний диаметр опорного торца, мм; – коэффициент трения.

С плоскими торцами:

Для винта с башмаком:

Материал: сталь 35 или сталь 45 с твердостью HRC 30-35 и точностью резьба по третьему классу.

^ 3.3.2. Клиновые зажимы

Клин применяется в следующих конструктивных вариантах:


  1. Плоский односкосый клин.

  2. Двускосый клин.

  3. Круглый клин.

Рис. 3.2. Плоский односкосый клин.

Рис. 3.3. Двускосый клин.

Рис. 3.4. Круглый клин.

4) кривошипный клин в форме эксцентрика или плоского кулачка с рабочим профилем, очерченным по архимедовой спирали;

Рис. 3.5. Кривошипный клин: а – в форме эксцентрика; б) – в форме плоского кулачка.

5) винтовой клин в форме торцевого кулачка. Здесь односкосый клин как бы свернут в цилиндр: основание клина образует опору, а его наклонная плоскость - винтовой профиль кулачка;

6) в самоцентрирующих клиновых механизмах (патроны, оправки) не пользуются системы из трех и более клиньев.

^ 3.3.2.1. Условие самоторможение клина

Рис. 3.6. Условие самоторможение клина.

Где: - угол трения.

Где: коэффициент трения;

Для клина с трением только по наклонной поверхности условие самоторможение:

С трением на двух поверхностях:

Имеем: ; или: ;.

Тогда: условие самоторможение для клина с трением на двух поверхностях:

Для клина с трением только на наклонной поверхности:

С трением на двух поверхностях:

С трением только на наклонной поверхности:

^ 3.3.3.Эксцентриковые зажимы

Рис. 3.7. Схемы для расчета эксцентриков.

Такие зажимы являются быстродействующими, но развивают меньшую силу, чем винтовые. Обладают свойством самоторможения. Основной недостаток: не могут надежно работать при значительных колебаниях размеров между установочной и зажимаемой поверхностью обрабатываемых деталей.

;

Где: (- среднее значение радиуса, проведенного из центра вращения эксцентрика в точку А зажима, мм; (- средний угол подъема эксцентрика в точке зажима; (, (1 – углы трения скольжения в точке А зажима и на оси эксцентрика.

Для расчетов принимают:

При l 2D расчет можно производить по формуле:

Условие самоторможения эксцентрика:

Обычно принимают .

Материал: сталь 20Х с цементацией на глубину 0,81,2 мм и закалкой до HRC 50…60.

3.3.4. Цанги

Цанги представляют собой пружинящие гильзы. Их применяют для установки заготовок по наружным и внутренним цилиндрическим поверхностям.

Где: – сила закрепления заготовки; Q – сила сжатия лепестков цанги; - угол трения между цангой и втулкой.

Рис. 3.8. Цанга.

^ 3.3.5. Устройства для зажима деталей типа тел вращения

Кроме цанги для зажима деталей имеющих цилиндрическую поверхность, применяют разжимные оправки, зажимные втулки с гидропластом, оправки и патроны с тарельчатыми пружинами, мембранные патроны и другие.

Консольные и центровые оправки применяют для установки с центральным базовым отверстием втулок, колец, шестерен, обрабатываемых на многорезцовых шлифовальных и других станках.

При обработке партии таких деталей требуется получить высокую концентричность наружных и внутренних поверхностей и заданную перпендикулярность торцов к оси детали.

В зависимости от способа установки и центрирования обрабатываемых деталей консольные и центровые оправки можно подразделить на следующие.виды: 1) жесткие (гладкие) для установки деталей с зазором или натягом; 2) разжимные цанговые; 3) клиновые (плунжерные, шариковые); 4) с тарельчатыми пружинами; 5) самозажимные (кулачковые, роликовые); 6) с центрирующей упругой втулкой.

Рис. 3.9. Конструкции оправок: а - гладкая оправка; б - оправка с разрезной втулкой.

На рис. 3.9, а показана гладкая оправка 2, на цилиндрической части которой установлена обрабатываемая деталь 3. Тяга 6, закрепленная на штоке пневмоцилиндра, при перемещении поршня со штоком влево головкой 5 нажимает на быстросменную шайбу 4 и зажимает деталь 3 на гладкой оправке 2. Оправка конической частью 1 вставляется в конус шпинделя станка. При зажиме обрабатываемой детали на оправке осевая сила Q на штоке механизированного привода вызывает между торцами шайбы 4, уступом оправки и обрабатываемой деталью 3 момент от силы трения, больший, чем момент М рез от силы резания Р z . Зависимость между моментами:

;

Откуда сила на штоке механизированного привода:

.

По уточненной формуле:

.

Где: - коэффициент запаса; Р z - вертикальная составляющая сила резания, Н (кгс); D - наружный диаметр поверхности обрабатываемой детали, мм; D 1 - наружный диаметр быстросменной шайбы, мм; d - диаметр цилиндрической установочной части оправки, мм; f= 0,1 - 0,15 - коэффициент трения сцепления.

На рис. 3.9, б показана оправка 2 с разрезной втулкой 6, на которой устанавливают и зажимают обрабатываемую деталь 3. Конической частью 1 оправку 2 вставляют в конус шпинделя станка. Зажим и разжим детали на оправке производят механизированным приводом. При подаче сжатого воздуха в правую полость пневмоцилиндра поршень, шток и тяга 7 движутся влево и головка 5 тяги с шайбой 4 перемещает разрезную втулку 6 по конусу оправки, пока она не зажмет деталь на оправке. Во время подачи сжатого воздуха в левую полость пневмоцилиндра поршень, шток; и тяга перемещаются вправо, головка 5 с шайбой 4 отходят от втулки 6 и деталь разжимается.

Рис.3.10. Консольная оправка с тарельчатыми пружинами (а) и тарельчатая пружина (б) .

Крутящий момент от вертикальной силы резания Р z должен быть меньше момента от сил трения на цилиндрической поверхности разрезной втулки 6 оправки. Осевая сила на штоке механизированного привода (см. рис. 3.9, б ).

;

Где: - половина угла конуса оправки, град; - угол трения на поверхности контакта оправки с разрезной втулкой, град; f=0,15-0,2 - коэффициент трения.

Оправки и патроны с тарельчатыми пружинами применяют для центрирования и зажима по внутренней или наружной цилиндрической поверхности обрабатываемых деталей. На рис. 3.10, а, б соответственно показаны консольная оправка с тарельчатыми пружинами и тарельчатая пружина. Оправка состоит из корпуса 7, упорного кольца 2, пакета тарельчатых пружин 6, нажимной втулки 3 и тяги 1, соединенной со штоком пневмоцилиндра. Оправку применяют для установки и закрепления детали 5 по внутренней цилиндрической поверхности. При перемещении поршня со штоком и тягой 1 влево последняя головкой 4 и втулкой 3 нажимает на тарельчатые пружины 6. Пружины выпрямляются, их наружный диаметр увеличивается, а внутренний уменьшается, обрабатываемая деталь 5 центрируется и зажимается.

Размер установочных поверхностей пружин при сжатии может изменяться в зависимости от их размера на 0,1 - 0,4 мм. Следовательно, базовая цилиндрическая поверхность обрабатываемой детали должна иметь точность 2 - 3-го классов.

Тарельчатую пружину с прорезями (рис. 3.10, б ) можно рассматривать как совокупность двухзвенных рычажно-шарнирных механизмов двустороннего действия, разжимаемых осевой силой. Определив крутящий момент М рез от силы резания Р z и выбирая коэффициент запаса К , коэффициент трения f и радиус R установочной поверхности тарельчатой поверхности пружины, получим равенство:

Из равенства определим суммарную радиальную силу зажима, действующую на установочной поверхности обрабатываемой детали:

.

Осевая сила на штоке механизированного привода для тарельчатых пружин:

С радиальными прорезями

;

Без радиальных прорезей

;

Где: - угол наклона тарельчатой пружины при зажиме детали, град; К=1,5 - 2,2 - коэффициент запаса; М рез - крутящий момент от силы резания Р z , Н-м (кгс-см); f=0,1- 0,12 - коэффициент трения между установочной поверхностью тарельчатых пружин и базовой поверхностью обрабатываемой детали; R - радиус установочной поверхности тарельчатой пружины, мм; Р z - вертикальная составляющая сила резания, Н (кгс); R 1 - радиус обработанной поверхности детали, мм.

Патроны и оправки с самоцентрирующими тонкостенными втулками, наполненными гидропластмассой, применяют для установки по наружной или внутренней поверхности деталей, обрабатываемых на токарных и других станках.

На приспособлениях с тонкостенной втулкой обрабатываемые детали наружной или внутренней поверхностью устанавливают на цилиндрическую поверхность втулки. При разжиме втулки гидропластмассой детали центрируются и зажимаются.

Форма и размеры тонкостенной втулки должны обеспечивать достаточную ее деформацию для надежного зажима детали на втулке при обработке детали на станке.

При конструировании патронов и оправок с тонкостенными втулками с гидропластмассой рассчитывают:


  1. основные размеры тонкостенных втулок;

  2. размеры нажимных винтов и плунжеров у приспособлений с ручным зажимом;

  3. размеры плунжеров, диаметр цилиндра и ход поршня для приспособлений с механизированным приводом.

Рис. 3.11. Тонкостенная втулка.

Исходными данными для расчета тонкостенных втулок являются диаметр D д отверстия или диаметр шейки обрабатываемой детали и длина l д отверстия или шейки обрабатываемой детали.

Для расчета тонкостенной самоцентрирующей втулки (рис. 3.11) примем следующие обозначения: D - диаметр установочной поверхности центрирующей втулки 2, мм; h - толщина тонкостенной части втулки, мм; Т - длина опорных поясков втулки, мм; t - толщина опорных поясков втулки, мм; - наибольшая диаметральная упругая деформация втулки (увеличение или уменьшение диаметра в ее средней части) мм; S max - максимальный зазор между установочной поверхностью втулки и базовой поверхностью обрабатываемой детали 1 в свободном состоянии, мм; l к - длина контактного участка упругой втулки с установочной поверхностью обрабатываемой детали после разжима втулки, мм; L -длина тонкостенной части втулки, мм; l д - длина обрабатываемой детали, мм; D д - диаметр базовой поверхности обрабатываемой детали, мм; d - диаметр отверстия опорных поясков втулки, мм; р - давление гидропластмассы, требуемое для деформации тонкостенной втулки, МПа (кгс/см 2); r 1 - радиус закругления втулки, мм; M рез =P z r - допустимый крутящий момент, возникающий от силы резания, Н-м (кгс-см); P z - сила резания, Н (кгс); r -плечо момента силы резания.

На рис. 3.12 показана консольная оправка с тонкостенной втулкой и гидропластмассой. Обрабатываемую деталь 4 базовым отверстием устанавливают на наружную поверхность тонкостенной втулки 5. При подаче сжатого воздуха в штоковую полость пневмоцилиндра поршень со штоком перемещается в пневмоцилиндре влево и шток через тягу 6 и рычаг 1 передвигает плунжер 2, который нажимает на гидропластмассу 3. Гидропластмасса равномерно давит на внутреннюю поверхность втулки 5, втулка разжимается; наружный диаметр втулки увеличивается, и она центрирует и закрепляет обрабатываемую деталь 4.

Рис. 3.12. Консольная оправка с гидропластмассой.

Мембранные патроны применяют для точного центрирования и зажима деталей, обрабатываемых на токарных и шлифовальных станках. В мембранных патронах обрабатываемые детали устанавливают по наружной или внутренней поверхности. Базовые поверхности деталей должны быть обработаны по 2-За-му классам точности. Мембранные патроны обеспечивают точность центрирования деталей 0,004-0,007 мм.

Мембраны - это тонкие металлические диски с рожками или без рожков (кольцевые мембраны). В зависимости от воздействия на мембрану штока механизированного привода - тянущего или толкающего действия - мембранные патроны подразделяются на разжимные и зажимные.

В разжимном мембранном рожковом патроне при установке кольцевой детали мембрана с рожками, штоком привода прогибается влево к шпинделю станка. При этом рожки мембраны с зажимающими винтами, установленными на концах рожков, сходятся к оси патрона, и обрабатываемое кольцо устанавливается центральным отверстием в патроне.

При прекращении нажима на мембрану под действием упругих сил она выпрямляется, ее рожки с винтами расходятся от оси патрона и зажимают обрабатываемое кольцо по внутренней поверхности. В зажимном мембранном рожковом патроне при установке кольцевой детали по наружной поверхности мембрана штоком привода прогибается вправо от шпинделя станка. При этом рожки мембраны расходятся от оси патрона и обрабатываемая деталь разжимается. Затем устанавливается следующее кольцо, нажим на мембрану прекращается, она выпрямляется и рожками с винтами зажимает обрабатываемое кольцо. Зажимные мембранные рожковые патроны с механизированным приводом изготовляются по МН 5523-64 и МН 5524-64 и с ручным приводом по МН 5523-64.

Мембранные патроны бывают рожковые и чашечные (кольцевые), их изготовляют из стали 65Г, ЗОХГС с закалкой до твердости HRC 40-50. Основные размеры рожковых и чашечных мембран нормализованы.

На рис. 3.13, а, б показана конструктивная схема мембранно-рожкового патрона 1. На заднем" конце шпинделя станка установлен пневмопривод патрона. При подаче сжатого воздуха в левую полость пневмоцилиндра поршень со штоком и тягой 2 перемещается вправо. При этом тяга 2, нажимая на рожковую мембрану 3, прогибает ее, кулачки (рожки) 4 расходятся, и деталь 5 разжимается (рис. 3.13, б ). Во время подачи сжатого воздуха в правую полость пневмоцилиндра его поршень со штоком и тягой 2 перемещается влево и отходит от мембраны 3. Мембрана под действием внутренних упругих сил выпрямляется, кулачки 4 мембраны сходятся и зажимают по цилиндрической поверхности деталь 5 (рис. 3.13, а).

Рис. 3.13. Схема мембранно-рожкового патрона

Основные данные для расчета патрона (рис. 3.13, а) с рожко-, вой мембраной: момент резания М рез , стремящийся повернуть обрабатываемую деталь 5 в кулачках 4 патрона; диаметр d = 2b базовой наружной поверхности обрабатываемой детали; расстояние l от середины мембраны 3 до середины кулачков 4. На рис. 3.13, в дана расчетная схема нагруженной мембраны. Круглая, жестко закрепленная по наружной поверхности мембрана нагружена равномерно распределенным изгибающим моментом М И , приложенным по концентрической окружности мембраны радиуса b базовой поверхности обрабатываемой детали. Данная схема является результатом наложения двух схем, показанных на рис. 3.13, г, д, причем М И 1 3 .

На рис. 3.13, в принято: а - радиус наружной поверхности мембраны, см (выбирают по конструктивным условиям); h=0,10,07 - толщина мембраны, см; М И - момент, изгибающий мембрану, Н-м (кгс-мм); - угол разжима кулачков 4 мембраны, требуемый для установки и зажима обрабатываемой детали с наименьшим предельным размером, град.

На рис. 3.13, е показан максимальный угол разжима кулачков мембраны:

Где: - дополнительный угол разжима кулачка, учитывающий допуск на неточность изготовления установочной поверхности детали; - угол разжима кулачков, учитывающий диаметральный зазор , необходимый для возможности установки деталей в патрон.

Из рис. 3.13, e видно, что угол:

;

Где: - допуск на неточность изготовления детали на смежной предшествующей операции; мм.

Число кулачков n мембранного патрона принимают в зависимости от формы и размеров обрабатываемой детали. Коэффициент трения между установочной поверхностью детали и кулачков . Коэффициент запаса. Допуск на размер установочной поверхности детали задается чертежом. Модуль упругости МПа (кгс/см 2).

Имея необходимые данные, рассчитывают мембранный патрон.

1. Радиальная сила на одном кулачке мембранного патрона для передачи крутящего момента М рез

Силы P з вызывают момент, изгибающий мембрану (см. рис. 3.13, в).

2. При большом количестве кулачков патрона момент М п можно считать равномерно действующим по окружности мембраны радиуса b и вызывающим ее изгиб:

3. Радиусом а наружной поверхности мембраны (из конструктивных соображений) задаются.

4. Отношение т радиуса а мембраны к радиусу b установочной поверхности детали: а/b = т.

5. Моменты М 1 и М 3 в долях от М и и = 1) находят в зависимости от m= a/b по следующим данным (табл. 3.1):

Таблица 3.1


m=a/b

1,25

1,5

1,75

2,0

2,25

2,5

2,75

3,0

M 1

0,785

0,645

0,56

0,51

0,48

0,455

0,44

0,42

M 3

0,215

0,355

0,44

0,49

0,52

0,545

0,56

0,58

6. Угол (рад) разжима кулачков при закреплении детали с наименьшим предельным размером:

7. Цилиндрическая жесткость мембраны [Н/м (кгс/см)]:

Где: МПа - модуль упругости (кгс/см 2); =0,3.

8. Угол наибольшего разжима кулачков (рад):

9. Сила на штоке механизированного привода патрона, необходимая для прогиба мембраны и разведения кулачков при разжиме детали, на максимальный угол :

.

При выборе точки приложения и направления зажимного усилия необходимо соблюдать следующее: для обеспечения контакта заготовки с опорным элементом и устранения возможного ее сдвига при закреплении зажимное усилие следует направлять перпендикулярно к поверхности опорного элемента; в целях устранения деформации заготовки при закреплении точку приложения зажимного усилия надо выбирать так, чтобы линия его действия пересекала опорную поверхность установочного элемента.

Количество точек приложения зажимных усилий определяют конкретно к каждому случаю зажима заготовки в зависимости от вида заготовки, метода обработки, направления силы резания. Для уменьшения вибрации и деформации заготовки под действием сил резания следует повышать жесткость системы заготовка – приспособление путем увеличения числа точек зажима заготовки за счет введения вспомогательных опор.

К зажимным элементам относятся винты, эксцентрики, прихваты, тисочные губки, клинья, плунжеры, планки. Они являются промежуточными звеньями в сложных зажимных системах. Форма рабочей поверхности зажимных элементов, контактирующих с заготовкой, в основном такая же, как и установочных элементов. Графически зажимные элементы обозначаются согласно табл. 3.2.

Таблица 3.2 Графическое обозначение зажимных элементов

Контрольные задания.

Задание 3.1.

Основные правила при закреплении заготовки?

Задание 3.2.

От чего зависит количество точек зажима детали при обработке?

Задание 3.3.

Преимущества и недостатки применения эксцентриков.

Задание 3.4.

Графическое обозначение зажимных элементов.