Принципы и методы системного анализа. Системный анализ Метод ролей системный анализ

Что такое слон или, зачем нужен системный анализ?

Однажды шестеро слепцов спросили, что такое слон. И добрые люди подвели их к слону. Один, потрогав бок, сказал: я знаю, слон - это стена. Другой, дотронувшись до ноги, произнес: это столб. Третий, подержавшись за хобот - это змея… Все они ушли в полной уверенности, что знают, что такое слон.

С этой притчи я начинаю первое занятие по дисциплине «Теория систем и системный анализ». Она позволяет ясно и кратко обозначить несколько важных аспектов этой очень интересной и полезной дисциплины.

На первом занятии она позволяет обозначить позицию, на которой мы находимся со студентами в начале изучения дисциплины. С каждой новой группой мы вместе со студентами как слепцы из притчи и перед нами «слон» - это дисциплина «Теория систем и системный анализ». У каждого есть свое представление об этой дисциплине и для того, чтобы эффективно работать дальше нам надо, чтобы мы все одинаково понимали то, о чем мы будем говорить. И основная задача первого занятия - это определиться в терминах и прийти к общему пониманию того, что будем изучать дальше. И тогда, говоря словами одного из моих студентов «придет осознание, что «системный анализ» - это не просто набор слов, а нужная дисциплина в моей профессии».

Итак, что же такое системный анализ? «Системным анализом называется логически связанная совокупность теоретических и эмпирических положений из области математики, естественных наук и опыта разработки сложных систем, обеспечивающая повышение обоснованности решения конкретной проблемы».

Системный анализ позволяет разделить сложную задачу на совокупность простых задач, расчленить сложную систему на элементы с учетом их взаимосвязи.

Во многих других предметах есть масса приемов и методов, сложно применимых для других дисциплин. В системном анализе есть система методов, которые применяются во всех других предметах.

Одна из задач дисциплины «Теория систем и системный анализ» - изучить как можно больше методов системного анализа. Знание методов и умение применять их к любой задаче позволяют более эффективно и качественно решать проблемы, возникающие как в профессиональной деятельности, так и в личной сфере.

В процессе освоения теоретических и практических аспектов системного анализа, применения изучаемых методов к решению задач развивается системное мышление. Системное мышление - это второй аспект, который позволяет проиллюстрировать притча про слона. Видеть системно - это видеть «всего слона сразу», видеть при решении любой проблемы ситуацию в целом, понимать все аспекты и нюансы.

Другими словами «системное мышление - это умение мыслить так, чтобы видеть целостную картину, при этом опираясь на различные теоретические модели и целостное интуитивное видение сложных объектов». В системном мышлении пока чаще превалирует интуиция. Системное мышление с преобладанием фактора интуиции может использовать как методы индуктивного, так и дедуктивного мышления.

Каждый человек обладает системностью мышления, но не каждый пользуется. Изучение системного анализа позволяет развить системное мышление и увидеть преимущества его использования при решении любых задач любого уровня сложности в любой сфере деятельности. Развитие системного мышления - это основная задача дисциплины «Теория систем и системный анализ».

Моя задача как преподавателя состоит в том, чтобы студенты попробовали методы системного анализа, применив их в своей практической деятельности, прежде всего профессиональной, и, может быть еще где-либо и увидели их эффективность.

Задача студентов - слушать, записывать свои мысли, задавать как можно больше вопросов, и высказывать свое мнение.

И тогда изучение дисциплины «Теория систем и системный анализ» будет интересным, полезным и позволить продвинуться дальше на пути становления эффективного профессионала.

Существуют различные точки зрения на содержание понятия «системный анализ» и область его применения. Изучение различных определений системного анализа позволяет выделить четыре его трактовки.

Первая трактовка рассматривает системный анализ как один из конкретных методов выбора лучшего решения возникшей проблемы, отождествляя его, например, с анализом по критерию стоимость - эффективность.

Такая трактовка системного анализа характеризует попытки обобщить наиболее разумные приемы любого анализа (например, военного или экономического), определить общие закономерности его проведения.

В первой трактовке системный анализ - это, скорее, «анализ систем», так как акцент делается на объекте изучения (системе), а не на системности рассмотрения (учете всех важнейших факторов и взаимосвязей, влияющих на решение проблемы, использование определенной логики поиска лучшего решения и т.д.)

В ряде работ, освещающих те или иные проблемы системного анализа, слово «анализ» употребляется с такими прилагательными, как количественный, экономический, ресурсный, а термин «системный анализ» применяется значительно реже.

Согласно второй трактовке системный анализ - это конкретный метод познания (противоположность синтезу).

Третья трактовка рассматривает системный анализ как любой анализ любых систем (иногда добавляется, что анализ на основе системной методологии) без каких-либо дополнительных ограничений на область его применения и используемые методы.

Согласно четвертой трактовке системный анализ - это вполне конкретное теоретико-прикладное направление исследований, основанное на системной методологии и характеризующееся определенными принципами, методами и областью применения. Он включает в свой состав как методы анализа, так и методы синтеза.

Нам представляется правильной четвертая трактовка, наиболее адекватно отражающая направленность системного анализа и совокупность используемых им методов.

Итак, системный анализ - это совокупность определенных научных методов и практических приемов решения разнообразных проблем, возникающих во всех сферах целенаправленной деятельности общества, на основе системного подхода и представления объекта исследования в виде системы. Характерным для системного анализа является то, что поиск лучшего решения проблемы начинается с определения и упорядочения целей деятельности системы, при функционировании которой возникла данная проблема. При этом устанавливается соответствие между этими целями, возможными путями решения возникшей проблемы и потребными для этого ресурсами.

Системный анализ характеризуется главным образом упорядоченным, логически обоснованным подходом к исследованию проблем и использованию существующих методов их решения, которые могут быть разработаны в рамках других наук.

Целью системного анализа является полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

Системный анализ, по существу, является средством установления рамок для систематизированного и более эффективного использования знаний, суждений и интуиции специалистов; он обязывает к определенной дисциплине мышления.

Иными словами, системный анализ - это систематизированные методы оказания лицу, принимающему решение, помощи при выборе курса действий путем изучения всей проблемы в целом, определения конечных целей и различных путей их достижения с учетом возможных последствий. Для получения квалифицированного суждения по проблемам используются соответствующие методы.

Одна из задач системного анализа заключается в раскрытии содержания проблем, стоящих перед руководителями, принимающими решения, настолько, чтобы им стали очевидны все основные последствия решений и их можно было бы учитывать в своих действиях. Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учетом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение.

Кратко охарактеризуем методологию системного анализа, используя определение методологии науки.

«Методология науки дает характеристику компонентов научного исследования, его объекта, предмета анализа, задачи исследования (или проблемы), совокупности исследовательских средств, необходимых для решения задачи данного типа, а также формирует представление о последовательности движения исследования в процессе решения задач».

Вначале определим содержание объекта системного анализа, т.е. выясним его специфику и место среди других родственных ему научных направлений.

Объект системного анализа в теоретическом аспекте - это процесс подготовки и принятия решений; в прикладном аспекте - различные конкретные проблемы, возникающие при создании и функционировании систем.

В теоретическом аспекте - это, во-первых, общие закономерности проведения исследований, направленные на поиск наилучших решений различных проблем на основе системного подхода (содержание отдельных этапов системного анализа, взаимосвязи, существующие между ними, и др.).

Во-вторых, конкретные научные методы исследования - определение целей и их ранжирование, дезагрегирование проблем (систем) на их составные элементы, определение взаимосвязей, существующих как между элементами системы, так и между системой и внешней средой и др.

В-третьих, принципы интегрирования различных методов и приемов исследования (математических и эвристических), разработанных как в рамках системного анализа, так и в рамках других научных направлений и дисциплин в стройную, взаимообусловленную совокупность методов системного анализа.

Теоретические основы разработки, принятия и реализации решений"

Принятие решений является неотъемлемой частью деятельности человека в любой сфере: политической, эко­номической, культурной, личной жизни и т. п.

Возможные последствия решений могут затрагивать интересы не только одного человека или нескольких, но и крупных коллективов, регионов и общества в целом. Поэтому, чтобы избежать моральных и материальных издержек, важно знать теорию и практику принятия решений.

Существенным отличительным признаком управлен­ческого решения является то, что оно принимается при наличии назревшей проблемы. А поскольку такие пробле­мы возникают при управлении любым объектом (про­мышленным предприятием, банком или государственным учреждением) постоянно, то функция принятия решений заключается в постоянном решении в процессе управле­ния той или иной задачи.

Задача принятия решений направлена на определе­ние наилучшего способа (варианта) действий для дости­жения поставленных целей.

Цель - это идеальное представление желаемого со­стояния объекта управления или результата деятельно­сти.

Если фактическое состояние не соответствует желае­мому, то имеет место проблема.

Выработка плана действий по разрешению проблемы составляет сущность задачи принятия решений.

Проблемы могут возникать в случае, если функциони­рование системы (объекта и системы управления им) в данный момент не обеспечивает достижения поставлен­ных целей; функционирование системы в будущем не обеспечит достижения поставленных целей; требуется изменение целей деятельности системы.

Проблема всегда порождается определенными условиями, которые обобщенно называют ситуацией.

Совокупность проблемы и ситуации образует проблем­ную ситуацию.

Таким образом, проблемой, требующей принятия ре­шения, принято называть ситуацию, характеризующуюся таким различием между необходимым (желаемым) и фактическим состоянием системы, которое препятствует ее развитию или нормальному функционированию.

Проблема может быть острой или критической, если проблемная ситуация угрожает самому существованию объекта и (или) системы управления им.

Таким образом, управленческое решение служит средством разрешения проблемы. В обобщенном виде оно представляет собой предписание к действию, перечень мер, позволяющих привести систему в требуемое состоя­ние или изменить само требуемое состояние. Под решени­ем понимают подход к рациональному выбору как мини­мум из двух вариантов.

Принятие решений представляет собой подфункцию функции управления. Это процесс, который начинается с возникновения проблемной ситуации и заканчивается выбором решения - действия по устранению проблемной ситуации.

Какое же место занимает управленческое решение в процессе управления?

С содержательной точки зрения, управление пред­ставляет собой циклически повторяющийся процесс вы­полнения определенных видов деятельности, которые по­лучили название функций управления. Их состав и содер­жание характеризуют функциональную структуру про­цесса управления. С другой стороны, выполнение функ­ций управления можно представить в виде последова­тельно сменяющих друг друга этапов действий:

· сбора, обработки и анализа информации о состоянии объекта управления и системы управления им;

· определения цели функционирования и выработки управленческого решения;

· доведения решения до исполнителя;

· реализации решения и изменений в системе.

Последовательное осуществление субъектом управле­ния логически взаимосвязанных этапов представляет со­бой управленческий цикл, который характеризует орга­низационно-технологическую структуру процесса управ­ления (рис. 1.1).

Рис. 1.1. Структура управленческого цикла

В различных технических и социально-экономических системах структура управленческих циклов различная. Однако какой бы тип управленческого цикла мы ни взяли, центральное место в любом из них занимает управленческое решение. Все этапы управленческого цикла непосредственно направлены либо на подготовку решения, либо на его реализацию. Таким образом, управ­ленческое решение пронизывает собой весь управленче­ский цикл.

Следовательно, процесс выработки и принятия управ­ленческого решения является важнейшей характеристи­кой организационно-технологической структуры процесса управления.

Управленческое решение - это элемент процесса управления.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Таврический Федеральный Университет им. В.И. Вернадского

Факультет математики и информатики

Реферат на тему:

«Системный анализ»

Выполнил студент 3 курса, 302группы

Таганов Александр

Научный руководитель

Стонякин Фёдор Сергеевич

План

1. Определение системного анализа

1.1 Построение модели

1.2 Постановка задачи исследования

1.3 Решение поставленной математической задачи

1.4 Характеристика задач системного анализа

2.

3. Процедуры системного анализа

4.

4.1 Формирование проблемы

4.2 Определение целей

5. Генерирование альтернатив

6.

Вывод

Список литературы

1. Определения системного анализа

Системный анализ как дисциплина сформировался в результате возникновения необходимости исследовать и проектировать сложные системы, управлять ими в условиях неполноты информации, ограниченности ресурсов и дефицита времени. Системный анализ является дальнейшим развитием целого ряда дисциплин, таких как исследование операций, теория оптимального управления, теория принятия решений, экспертный анализ, теория организации эксплуатации систем и т.д. Для успешного решения поставленных задач системный анализ использует всю совокупность формальных и неформальных процедур. Перечисленные теоретические дисциплины являются базой и методологической основой системного анализа. Таким образом, системный анализ - междисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем. Широкое распространение идей и методов системного анализа, а главное - успешное их применение на практике стало возможным только с внедрением и повсеместным использованием ЭВМ. Именно применение ЭВМ как инструмента решения сложных задач позволило перейти от построения теоретических моделей систем к широкому их практическому применению. В связи с этим Н.Н. Моисеев пишет, что системный анализ - это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем - технических, экономических, экологических и т.д. Центральной проблемой системного анализа является проблема принятия решения. Применительно к задачам исследования, проектирования и управления сложными системами проблема принятия решения связана с выбором определённой альтернативы в условиях различного рода неопределённости. Неопределённость обусловлена многокритериальностью задач оптимизации, неопределённостью целей развития систем, неоднозначностью сценариев развития системы, недостаточностью априорной информации о системе, воздействием случайных факторов в ходе динамического развития системы и прочими условиями. Учитывая данные обстоятельства, системный анализ можно определить как дисциплину, занимающуюся проблемами принятия решений в условиях, когда выбор альтернативы требует анализа сложной информации различной физической природы.

Системный анализ является дисциплиной синтетической. В нём можно выделить три главных направления. Эти три направления соответствуют трём этапам, которые всегда присутствуют в исследовании сложных систем:

1)построение модели исследуемого объекта;

2)постановка задачи исследования;

3)решение поставленной математической задачи. Рассмотрим данные этапы.

системный математический генерирование

1.1 Построение модели

Построение модели (формализация изучаемой системы, процесса или явления) есть описание процесса на языке математики. При построении модели осуществляется математическое описание явлений и процессов, происходящих в системе. Поскольку знание всегда относительно, описание на любом языке отражает лишь некоторые стороны происходящих процессов и никогда не является абсолютно полным. С другой стороны, следует отметить, что при построении модели необходимо уделять основное внимание тем сторонам изучаемого процесса, которые интересуют исследователя. Глубоко ошибочным является желание при построении модели системы отразить все стороны существования системы. При проведении системного анализа, как правило, интересуются динамическим поведением системы, причём при описании динамики с точки зрения проводимого исследования есть первостепенные параметры и взаимодействия, а есть несущественные в данном исследовании параметры. Таким образом, качество модели определяется соответствием выполненного описания тем требованиям, которые предъявляются к исследованию, соответствием получаемых с помощью модели результатов ходу наблюдаемого процесса или явления. Построение математической модели есть основа всего системного анализа, центральный этап исследования или проектирования любой системы. От качества модели зависит результат всего системного анализа.

1.2 Постановка задачи исследования

На данном этапе формулируется цель анализа. Цель исследования предполагается внешним фактором по отношению к системе. Таким образом, цель становится самостоятельным объектом исследования. Цель должна быть формализована. Задача системного анализа состоит в проведении необходимого анализа неопределённостей, ограничений и формулировании, в конечном счёте, некоторой оптимизационной задачи.

Здесь х - элемент некоторого нормированного пространства G , определяемого природой модели, , где Е - множество, которое может иметь сколь угодно сложную природу, определяемую структурой модели и особенностями исследуемой системы. Таким образом, задача системного анализа на этом этапе трактуется как некоторая оптимизационная проблема. Анализируя требования к системе, т.е. цели, которые предполагает достигнуть исследователь, и те неопределённости, которые при этом неизбежно присутствуют, исследователь должен сформулировать цель анализа на языке математики. Язык оптимизации оказывается здесь естественным и удобным, но вовсе не единственно возможным.

1.3 Решение поставленной математической задачи

Только этот третий этап анализа можно отнести собственно к этапу, использующему в полной степени математические методы. Хотя без знания математики и возможностей её аппарата успешное выполнение двух первых этапов невозможно, так как и при построении модели системы, и при формулировании цели и задач анализа широкое применение должны находить методы формализации. Однако отметим, что именно на завершающем этапе системного анализа могут потребоваться тонкие математические методы. Но следует иметь в виду, что задачи системного анализа могут иметь ряд особенностей, которые приводят к необходимости применения наряду с формальными процедурами эвристических подходов. Причины, по которым обращаются к эвристическим методам, в первую очередь связаны с недостатком априорной информации о процессах, происходящих в анализируемой системе. Также к таковым причинам можно отнести большую размерность вектора х и сложность структуры множества G . В данном случае трудности, возникающие в результате необходимости применения неформальных процедур анализа, зачастую являются определяющими. Успешное решение задач системного анализа требует использования на каждом этапе исследования неформальных рассуждений. Ввиду этого проверка качества решения, его соответствие исходной цели исследования превращается в важнейшую теоретическую проблему.

1.4 Характеристика задач системного анализа

Системный анализ в настоящее время вынесен на самое остриё научных исследований. Он призван дать научный аппарат для анализа и изучения сложных систем. Лидирующая роль системного анализа обусловлена тем, что развитие науки привело к постановке тех задач, которые призван решать системный анализ. Особенность текущего этапа состоит в том, что системный анализ, ещё не успев сформироваться в полноценную научную дисциплину, вынужден существовать и развиваться в условиях, когда общество начинает ощущать потребность в применении ещё недостаточно разработанных и апробированных методов и результатов и не в состоянии отложить решение связанных с ними задач на завтра. В этом источник, как силы, так и слабости системного анализа: силы - потому, что он постоянно ощущает воздействие потребности практики, вынужден непрерывно расширять круг объектов исследования и не имеет возможности абстрагироваться от реальных потребностей общества; слабости - потому, что нередко применение «сырых», недостаточно проработанных методов системных исследований ведёт к принятию скороспелых решений, пренебрежению реальными трудностями.

Рассмотрим основные задачи, на решение которых направлены усилия специалистов и которые нуждаются в дальней- шей разработке. Во-первых, следует отметить задачи исследования системы взаимодействий анализируемых объектов с окружающей средой. Решение данной задачи предполагает:

· проведение границы между исследуемой системой и окружающей средой, предопределяющей предельную глубину влияния рассматриваемых взаимодействий, которыми ограничивается рассмотрение;

· определение реальных ресурсов такого взаимодействия;

рассмотрение взаимодействий исследуемой системы с системой более высокого уровня.

Задачи следующего типа связаны с конструированием альтернатив этого взаимодействия, альтернатив развития системы во времени и в пространстве.

Важное направление развития методов системного анализа связано с попытками создания новых возможностей конструирования оригинальных альтернатив решения, неожиданных стратегий, непривычных представлений и скрытых структур. Другими словами, речь здесь идёт о разработке методов и средств усиления индуктивных возможностей человеческого мышления в отличие от его дедуктивных возможностей, на усиление которых, по сути дела, направлена разработка формальных логических средств. Исследования в этом направлении начаты лишь совсем недавно, и единый концептуальный аппарат в них пока отсутствует. Тем не менее, и здесь можно выделить несколько важных направлений - таких, как разработка формального аппарата индуктивной логики, методов морфологического анализа и других структурно-синтаксических методов конструирования новых альтернатив, методов синтактики и организации группового взаимодействия при решении творческих задач, а также изучение основных парадигм поискового мышления.

Задачи третьего типа заключаются в конструировании множества имитационных моделей, описывающих влияние того или иного взаимодействия на поведение объекта исследования. Отметим, что в системных исследованиях не преследуется цель создания некой супермодели. Речь идёт о разработке частных моделей, каждая из которых решает свои специфические вопросы.

Даже после того как подобные имитационные модели созданы и исследованы, вопрос о сведении различных аспектов поведения системы в некую единую схему остается открытым. Однако решить его можно и нужно не посредством построения супермодели, а анализируя реакции на наблюдаемое поведение других взаимодействующих объектов, т.е. путём исследования поведения объектов - аналогов и перенесения результатов этих исследований на объект системного анализа. Такое исследование даёт основание для содержательного понимания ситуаций взаимодействия и структуры взаимосвязей, определяющих место исследуемой системы в структуре суперсистемы, компонентом которой она является.

Задачи четвёртого типа связаны с конструированием моделей принятия решений. Всякое системное исследование связано с исследованием различных альтернатив развития системы. Задача системных аналитиков - выбрать и обосновать наилучшую альтернативу развития. На этапе выработки и принятия решений необходимо учитывать взаимодействие системы с её подсистемами, сочетать цели системы с целями подсистем, выделять глобальные и второстепенные цели.

Наиболее развитая и в то же время наиболее специфическая область научного творчества связана с развитием теории принятия решений и формированием целевых структур, программ и планов. Здесь не ощущается недостатка и в работах, и в активно работающих исследователях. Однако и в данном случае слишком многие результаты находятся на уровне неподтверждённого изобретательства и разночтений в понимании, как существа стоящих задач, так и средств их решения. Исследования в этой области включают:

a) построение теории оценки эффективности принятых решений или сформированных планов и программ; б)решение проблемы многокритериальности в оценках альтернатив решения или планирования;

b) исследования проблемы неопределённости, особенно связанной не с факторами статистического характера, а с неопределённостью экспертных суждений и преднамеренно создаваемой неопределённостью, связанной с упрощением представлений о поведении системы;

c) разработка проблемы агрегирования индивидуальных предпочтений на решениях, затрагивающих интересы нескольких сторон, которые влияют на поведение системы;

d) изучение специфических особенностей социально-экономических критериев эффективности;

e) создание методов проверки логической согласованности целевых структур и планов и установления необходимого баланса между предопределённостью программы действий и её подготовленностью к перестройке при поступлении новой информации, как о внешних событиях, так и изменении представлений о выполнении этой программы.

Для последнего направления требуется новое осознание реальных функций целевых структур, планов, программ и определение тех, которые они должны выполнять, а также связей между ними.

Рассмотренные задачи системного анализа не охватывают полного перечня задач. Здесь перечислены те, которые представляют наибольшую сложность при их решении. Следует отметить, что все задачи системных исследований тесно взаимосвязаны друг с другом, не могут быть изолированы и решаться отдельно как по времени, так и по составу исполнителей. Более того, чтобы решать все эти задачи, исследователь должен обладать широким кругозором и владеть богатым арсеналом методов и средств научного исследования.

2. Особенности задач системного анализа

Конечной целью системного анализа является разрешение проблемной ситуации, возникшей перед объектом проводимого системного исследования (обычно это конкретная организация, коллектив, предприятие, отдельный регион, социальная структура и т.п.). Системный анализ занимается изучением проблемной ситуации, выяснением её причин, выработкой вариантов её устранения, принятием решения и организацией дальнейшего функционирования системы, разрешающего проблемную ситуацию. Начальным этапом любого системного исследования является изучение объекта проводимого системного анализа с последующей его формализацией. На этом этапе возникают задачи, в корне отличающие методологию системных исследований от методологии других дисциплин, а именно, в системном анализе решается двуединая задача. С одной стороны, необходимо формализовать объект системного исследования, с другой стороны, формализации подлежит процесс исследования системы, процесс постановки и решения проблемы. Приведём пример из теории проектирования систем. Современная теория автоматизированного проектирования сложных систем может рассматриваться как одна из частей системных исследований. Согласно ей проблема проектирования сложных систем имеет два аспекта. Во-первых, требуется осуществить формализованное описание объекта проектирования. Причём на этом этапе решаются задачи формализованного описания как статической составляющей системы (в основном формализации подлежит её структурная организация), так и её поведение во времени (динамические аспекты, которые отражают её функционирование). Во-вторых, требуется формализовать процесс проектирования. Составными частями процесса проектирования являются методы формирования различных проектных решений, методы их инженерного анализа и методы принятия решений по выбору наилучших вариантов реализации системы.

Важное место в процедурах системного анализа занимает проблема принятия решения. В качестве особенности задач, встающих перед системными аналитиками, необходимо отметить требование оптимальности принимаемых решений. В настоящее время приходится решать задачи оптимального управления сложными системами, оптимального проектирования систем, включающих в себя большое количество элементов и подсистем. Развитие техники достигло такого уровня, при котором создание просто работоспособной конструкции само по себе уже не всегда удовлетворяет ведущие отрасли промышленности. Необходимо в ходе проектирования обеспечить наилучшие показатели по ряду характеристик новых изделий, например, добиться максимального быстродействия, минимальных габаритов, стоимости и т.п. при сохранении всех остальных требований в заданных пределах. Таким образом, практика предъявляет требования разработки не просто работоспособного изделия, объекта, системы, а создания оптимального проекта. Аналогичные рассуждения справедливы и для других видов деятельности. При организации функционирования предприятия формулируются требования по максимизации эффективности его деятельности, надёжности работы оборудования, оптимизации стратегий обслуживания систем, распределения ресурсов и т.п.

В различных областях практической деятельности (технике, экономике, социальных науках, психологии) возникают ситуации, когда требуется принимать решения, для которых не удаётся полностью учесть предопределяющие их условия. Принятие решения в таком случае будет происходить в условиях неопределённости, которая имеет различную природу. Один из простейших видов неопределённости - неопределённость исходной информации, проявляющаяся в различных аспектах. В первую очередь, отметим такой аспект, как воздействие на систему неизвестных факторов.

Неопределённость, обусловленная неизвестными факторами, также бывает разных видов. Наиболее простой вид такого рода неопределённости - стохастическая неопределённость . Она имеет место в тех случаях, когда неизвестные факторы представляют собой случайные величины или случайные функции, статистические характеристики которых могут быть определены на основании анализа прошлого опыта функционирования объекта системных исследований.

Следующий вид неопределённости - неопределённость целей . Формулирование цели при решении задач системного анализа является одной из ключевых процедур, потому что цель является объектом, определяющим постановку задачи системных исследований. Неопределённость цели является следствием из многокритериальности задач системного анализа. Назначение цели, выбор критерия, формализация цели почти всегда представляют собой трудную проблему. Задачи со многими критериями характерны для крупных технических, хозяйственных, экономических проектов.

И, наконец, следует отметить такой вид неопределённости, как неопределённость, связанная с последующим влиянием результатов принятого решения на проблемную ситуацию. Дело в том, что решение, принимаемое в настоящий момент и реализуемое в некоторой системе, призвано повлиять на функционирование системы. Собственно для того оно и принимается, так как по идее системных аналитиков данное решение должно разрешить проблемную ситуацию. Однако поскольку решение принимается для сложной системы, то развитие системы во времени может иметь множество стратегий. И конечно же, на этапе формирования решения и принятия управляющего воздействия аналитики могут не представлять себе полной картины развития ситуации. При принятии решения существуют различные рекомендации прогнозирования развития системы во времени. Один из таких подходов рекомендует прогнозировать некоторую «среднюю» динамику развития системы и принимать решения исходя из такой стратегии. Другой подход рекомендует при принятии решения исходить из возможности реализации самой неблагоприятной ситуации.

В качестве следующей особенности системного анализа отметим роль моделей как средства изучения систем, являющихся объектом системных исследований. Любые методы системного анализа опираются на математическое описание тех или иных фактов, явлений, процессов. Употребляя слово «модель», всегда имеют в виду некоторое описание, отражающее именно те особенности изучаемого процесса, которые и интересуют исследователя. Точность, качество описания определяются, прежде всего, соответствием модели тем требованиям, которые предъявляются к исследованию, соответствием полу- чаемых с помощью модели результатов наблюдаемому ходу процесса. Если при разработке модели используется язык математики, говорят о математических моделях. Построение математической модели является основой всего системного анализа. Это центральный этап исследования или проектирования любой системы. От качества модели зависит успешность всего последующего анализа. Однако в системном анализе наряду с формализованными процедурами большое место занимают неформальные, эвристические методы исследования. Этому есть ряд причин. Первая состоит в следующем. При построении моделей систем может иметь место отсутствие или недостаток исходной информации для определения параметров модели.

В этом случае проводится экспертный опрос специалистов с целью устранения неопределённости или, по крайней мере, её уменьшения, т.е. опыт и знания специалистов могут быть использованы для назначения исходных параметров модели.

Ещё одна причина применения эвристических методов состоит в следующем. Попытки формализовать процессы, протекающие в исследуемых системах, всегда связаны с формулированием определённых ограничений и упрощений. Здесь важно не перейти ту грань, за которой дальнейшее упрощение приведёт к потере сути описываемых явлений. Иными слова-

ми, желание приспособить хорошо изученный математический аппарат для описания исследуемых явлений может исказить их суть и привести к неверным решениям. В этой ситуации требуется использовать научную интуицию исследователя, его опыт и умение сформулировать идею решения задачи, т.е. применяется подсознательное, внутреннее обоснование алгоритмов построения модели и методов их исследования, не поддающееся формальному анализу. Эвристические методы поиска решений формируются человеком или группой исследователей в процессе их творческой деятельности. Эвристика - это совокупность знаний, опыта, интеллекта, используемых для получения решений с помощью неформальных правил. Эвристические методы оказываются полезными и даже незаменимыми при исследованиях, имеющих нечисловую природу или отличающихся сложностью, неопределённостью, изменчивостью.

Наверняка при рассмотрении конкретных задач системного анализа можно будет выделить ещё какие-то их особенности, но, по мнению автора, отмеченные здесь особенности являются общими для всех задач системных исследований.

3. Процедуры системного анализа

В предыдущем разделе были сформулированы три этапа проведения системного анализа. Эти этапы являются основой решения любой задачи проведения системных исследований. Суть их состоит в том, что необходимо построить модель исследуемой системы, т.е. дать формализованное описание изучаемого объекта, сформулировать критерий решения задачи системного анализа, т.е. поставить задачу исследования и далее решить поставленную задачу. Указанные три этапа проведения системного анализа являются укрупнённой схемой решения задачи. В действительности задачи системного анализа являются достаточно сложными, поэтому перечисление этапов не может быть самоцелью. Отметим также, что методика проведения системного анализа и руководящие принципы не являются универсальными - каждое исследование имеет свои особенности и требует от исполнителей интуиции, инициативы и воображения, чтобы правильно определить цели проекта и добиться успеха в их достижении. Неоднократно имели место попытки создать достаточно общий, универсальный алгоритм системного анализа. Тщательное рассмотрение имеющихся в литературе алгоритмов показывает, что у них большая степень общности в целом и различия в частностях, деталях. Постараемся изложить основные процедуры алгоритма проведения системного анализа, которые являются обобщением последовательности этапов проведения такого анализа, сформулированных рядом авторов, и отражают его общие закономерности.

Перечислим основные процедуры системного анализа:

· изучение структуры системы, анализ её компонентов, выявление взаимосвязей между отдельными элементами;

· сбор данных о функционировании системы, исследование информационных потоков, наблюдения и эксперименты над анализируемой системой;

· построение моделей;

· проверка адекватности моделей, анализ неопределённости и чувствительности;

· исследование ресурсных возможностей;

· определение целей системного анализа;

· формирование критериев;

· генерирование альтернатив;

· реализация выбора и принятие решений;

· внедрение результатов анализа.

4. Определение целей системного анализа

4.1 Ф ормулирование проблемы

Для традиционных наук начальный этап работы заключается в постановке формальной задачи, которую надо решать. В исследовании сложной системы это промежуточный результат, которому предшествует длительная работа по структурированию исходной проблемы. Начальный пункт определения целей в системном анализе связан с формулированием проблемы. Здесь следует отметить следующую особенность задач системного анализа. Необходимость системного анализа возникает тогда, когда заказчик уже сформулировал свою проблему, т.е. проблема не только существует, но и требует решения. Однако системный аналитик должен отдавать себе отчёт в том, что сформулированная заказчиком проблема представляет собой приблизительный рабочий вариант. Причины, по которым исходную формулировку проблемы необходимо считать в качестве первого приближения, состоят в следующем. Система, для которой формулируется цель проведения системного анализа, не является изолированной. Она связана с другими системами, входит как часть в состав некоторой надсистемы, например, автоматизированная система управления отделом или цехом на предприятии является структурной единицей АСУ всего предприятия. Поэтому, формулируя проблему для рассматриваемой системы, необходимо учитывать, как решение данной проблемы отразится на системах, с которыми связана данная система. Неизбежно планируемые изменения затронут и подсистемы, входящие в состав данной системы, и надсистему, содержащую данную систему. Таким образом, к любой реальной проблеме следует относиться не как к отдельно взятой, а как к объекту из числа взаимосвязанных проблем.

При формулировании системы проблем системный аналитик должен следовать некоторым рекомендациям. Во-первых, за основу должно браться мнение заказчика. Как правило, в качестве такового выступает руководитель организации, для ко- торой проводится системный анализ. Именно он, как было отмечено выше, генерирует исходную формулировку проблемы. Далее системный аналитик, ознакомившись со сформулированной проблемой, должен уяснить задачи, которые были поставлены перед руководителем, ограничения и обстоятельства, влияющие на поведение руководителя, противоречивые цели, между которыми он старается найти компромисс. Системный аналитик должен изучить организацию, для которой проводится системный анализ. Необходимо тщательно ознакомиться с существующей иерархией управления, функциями различных групп, а также предыдущими исследованиями соответствующих вопросов, если таковые проводились. Аналитик должен воздерживаться от высказывания своего предвзятого мнения о проблеме и от попыток втиснуть её в рамки своих прежних представлений ради того, чтобы использовать желательный для себя подход к её решению. Наконец, аналитик не должен оставлять непроверенными утверждения и замечания руководителя. Как уже отмечалось, проблему, сформулированную руководителем, необходимо, во-первых, расширять до комплекса проблем, согласованных с над- и подсистемами, и, во вторых, согласовывать её со всеми заинтересованными лицами.

Следует также отметить, что каждая из заинтересованных сторон имеет своё видение проблемы, отношение к ней. Поэтому при формулировании комплекса проблем необходимо учитывать, какие изменения и почему хочет внести та или другая сторона. Кроме того, проблему необходимо рассматривать всесторонне, в том числе и во временном, историческом плане. Требуется предвидеть, как сформулированные проблемы могут измениться с течением времени или в связи с тем, что исследование заинтересует руководителей другого уровня. Формулируя комплекс проблем, системный аналитик должен знать развёрнутую картину того, кто заинтересован в том или ином решении.

4.2 Определение целей

После того как сформулирована проблема, которую требуется преодолеть в ходе выполнения системного анализа, переходят к определению цели. Определить цель системного анализа - это означает ответить на вопрос, что надо сделать для снятия проблемы. Сформулировать цель - значит указать направление, в котором следует двигаться, чтобы разрешить существующую проблему, показать пути, которые уводят от существующей проблемной ситуации.

Формулируя цель, требуется всегда отдавать отчёт в том, что она играет активную роль в управлении. В определении цели было отражено, что цель - это желаемый результат развития системы. Таким образом, сформулированная цель системного анализа будет определять весь дальнейший комплекс работ. Следовательно, цели должны быть реалистичны. Задание реалистичных целей направит всю деятельность по выполнению системного анализа на получение определённого полезного результата. Важно также отметить, что представление о цели зависит от стадии познания объекта, и по мере развития представлений о нём цель может быть переформулирована. Изменение целей во времени может происходить не только по форме, в силу всё лучшего понимания сути явлений, происходящих в исследуемой системе, но и по содержанию, вследствие изменения объективных условий и субъективных установок, влияющих на выбор целей. Сроки изменения представлений о целях, старения целей различны и зависят от уровня иерархии рассмотрения объекта. Цели более высоких уровней долговечнее. Динамичность целей должна учитываться в системном анализе.

При формулировании цели нужно учитывать, что на цель оказывают влияние как внешние по отношению к системе факторы, так и внутренние. При этом внутренние факторы являются такими же объективно влияющими на процесс формирования цели факторами, как и внешние.

Далее следует отметить, что даже на самом верхнем уровне иерархии системы имеет место множественность целей. Анализируя проблему, необходимо учитывать цели всех заинтересованных сторон. Среди множества целей желательно попытаться найти или сформировать глобальную цель. Если этого сделать не удаётся, следует проранжировать цели в порядке их предпочтения для снятия проблемы в анализируемой системе.

Исследование целей заинтересованных в проблеме лиц должно предусматривать возможность их уточнения, расширения или даже замены. Это обстоятельство является основной причиной итеративности системного анализа.

На выбор целей субъекта решающее влияние оказывает та система ценностей, которой он придерживается, поэтому при формировании целей необходимым этапом работ является выявление системы ценностей, которой придерживается лицо, принимающее решение. Так, например, различают технократическую и гуманистическую системы ценностей. Согласно первой системе, природа провозглашается как источник неисчерпаемых ресурсов, человек-царь природы. Всем известен тезис: «Мы не можем ждать милостей от природы. Взять их у неё наша задача». Гуманистическая система ценностей говорит о том, что природные ресурсы ограничены, что человек должен жить в гармонии с природой и т.д. Практика развития человеческого общества показывает, что следование технократической системе ценностей приводит к пагубным последствиям. С другой стороны, полный отказ от технократических ценностей тоже не имеет оправдания. Необходимо не противопоставлять эти системы, а разумно дополнять их и формулировать цели развития системы с учётом обеих систем ценностей.

5. Генерирование альтернатив

Следующим этапом системного анализа является создание множества возможных способов достижения сформулированной цели. Иными словами, на данном этапе необходимо сгенерировать множество альтернатив, из которых затем будет осуществляться выбор наилучшего пути развития системы. Данный этап системного анализа является очень важным и трудным. Важность его заключается в том, что конечная цель системного анализа состоит в выборе наилучшей альтернативы на заданном множестве и в обосновании этого выбора. Если в сформированное множество альтернатив не попала наилучшая, то никакие самые совершенные методы анализа не помогут её вычислить. Трудность этапа обусловлена необходимостью генерации достаточно полного множества альтернатив, включающего в себя, на первый взгляд, даже самые нереализуемые.

Генерирование альтернатив, т.е. идей о возможных способах достижения цели, является настоящим творческим процессом. Существует ряд рекомендаций о возможных подходах к выполнению рассматриваемой процедуры. Необходимо сгенерировать как можно большее число альтернатив. Имеются следующие способы генерации:

a) поиск альтернатив в патентной и журнальной литературе;

b) привлечение нескольких экспертов, имеющих разную подготовку и опыт;

c) увеличение числа альтернатив за счёт их комбинации, образования промежуточных вариантов между предложенными ранее;

d) модификация имеющейся альтернативы, т.е. формирование альтернатив, лишь частично отличающихся от известной;

e) включение альтернатив, противоположных предложенным, в том числе и «нулевой» альтернативы (не делать ничего, т.е. рассмотреть последствия развития событий без вмешательства системотехников);

f) интервьюирование заинтересованных лиц и более широкие анкетные опросы; ж) включение в рассмотрение даже тех альтернатив, которые на первый взгляд кажутся надуманными;

g) генерирование альтернатив, рассчитанных на различные интервалы времени (долгосрочные, краткосрочные, экстренные).

При выполнении работы по генерированию альтернатив важно создать благоприятные условия для сотрудников, выполняющих данный вид деятельности. Большое значение имеют психологические факторы, влияющие на интенсивность творческой деятельности, поэтому необходимо стремиться к созданию благоприятного климата на рабочем месте сотрудников.

Существует ещё одна опасность, возникающая при выполнении работ по формированию множества альтернатив, о которой необходимо сказать. Если специально стремиться к тому, чтобы на начальной стадии было получено как можно больше альтернатив, т.е. стараться сделать множество альтернатив как можно более полным, то для некоторых проблем их количество может достичь многих десятков. Для подробного изучения каждой из них потребуются неприемлемо большие затраты времени и средств. Поэтому в данном случае необходимо провести предварительный анализ альтернатив и постараться сузить множество на ранних этапах анализа. На этом этапе анализа применяют качественные методы сравнения альтернатив, не прибегая к более точным количественным методам. Тем самым осуществляется грубое отсеивание.

Приведем теперь методы, используемые в системном анализе, для проведения работы по формированию множества альтернатив.

6. Внедрение результатов анализа

Системный анализ является прикладной наукой, его конечная цель - изменение существующей ситуации в соответствии с поставленными целями. Окончательное суждение о правильности и полезности системного анализа можно сделать лишь на основании результатов его практического применения.

Конечный результат будет зависеть не только от того, насколько совершенны и теоретически обоснованы методы, применяемые при проведении анализа, но и от того, насколько грамотно и качественно реализованы полученные рекомендации.

В настоящее время вопросам внедрения результатов системного анализа в практику уделяется повышенное внимание. В этом направлении можно отметить работы Р. Акоффа. Следует заметить, что практика системных исследований и практика внедрения их результатов существенно различаются для систем разных типов. Согласно классификации системы делятся на три типа: естественные, искусственные и социотехнические. В системах первого типа связи образованы и действуют природным образом. Примерами таких систем могут служить экологические, физические, химические, биологические и т.п. системы. В системах второго типа связи образованы в результате человеческой деятельности. Примерами могут служить всевозможные технические системы. В системах третьего типа, помимо природных связей, важную роль играют межличностные связи. Такие связи обусловлены не природными свойствами объектов, а культурными традициями, воспитанием участвующих в системе субъектов, их характером и прочими особенностями.

Системный анализ применяется для исследования систем всех трёх типов. В каждой из них есть свои особенности, требующие учёта при организации работ по внедрению результатов. Наиболее велика доля слабоструктурированных проблем в системах третьего типа. Следовательно, наиболее сложна практика внедрения результатов системных исследований в этих системах.

При внедрении результатов системного анализа необходимо иметь в виду следующее обстоятельство. Работа осуществляется на клиента (заказчика), обладающего властью, достаточной для изменения системы теми способами, которые будут определены в результате системного анализа. В работе должны непосредственно участвовать все заинтересованные стороны. Заинтересованные стороны - это те, кто отвечает за решение проблемы, и те, кого эта проблема непосредственно касается. В результате внедрения системных исследований необходимо обеспечить улучшение работы организации заказчика с точки зрения хотя бы одной из заинтересованных сторон; при этом не допускаются ухудшения этой работы с точки зрения всех остальных участников проблемной ситуации.

Говоря о внедрении результатов системного анализа, важно отметить, что в реальной жизни ситуация, когда сначала проводят исследования, а затем их результаты внедряют в практику, встречается крайне редко, лишь в тех случаях, когда речь идёт о простых системах. При исследовании социотехнических систем они изменяются с течением времени как сами по себе, так и под влиянием исследований. В процессе проведения системного анализа изменяются состояние проблемной ситуации, цели системы, персональный и количественный состав участников, соотношения между заинтересованными сторонами. Кроме того, следует заметить, что реализация принятых решений влияет на все факторы функционирования системы. Этапы исследования и внедрения в такого типа системах фактически сливаются, т.е. идёт итеративный процесс. Проводимые исследования оказывают влияние на жизнедеятельность системы, и это видоизменяет проблемную ситуацию, ставит новую задачу исследований. Новая проблемная ситуация стимулирует дальнейшее проведение системного анализа и т.д. Таким образом, проблема постепенно решается в ходе активного исследования.

В ывод

Важной особенностью системного анализа является исследование процессов целеобразования и разработка средств работы с целями (методик, структуризации целей). Иногда даже системный анализ определяют как методологию исследования целенаправленных систем.

Список литературы

Моисеев, Н.Н. Математические задачи системного анализа / Н.Н. Моисеев. - М. : Наука, 1981.

Оптнер, С. Системный анализ для решения деловых и промышленных проблем / С. Оптнер. - М. : Советское радио,

Основы системного подхода и их приложение к разработке территориальных АСУ / под ред. Ф.И. Перегудова. - Томск:Изд-во ТГУ, 1976. - 440 с.

Основы общей теории систем: учеб. пособие. - СПб. : ВАС, 1992. - Ч. 1.

Перегудов, Ф.И. Введение в системный анализ: учеб. пособие / Ф.И. Перегудов, Ф.П. Тарасенко. - М. : Высшая школа, 1989. - 367 с.

Рыбников, К.А. История математики: учебник / К.А. Рыбников. - М. : Изд-во МГУ, 1994. - 496 с.

Стройк, Д.Я. Краткий очерк истории математики / Д.Я. Стройк. - М. : Наука, 1990. - 253 с.

Степанов, Ю.С. Семиотика / Ю.С. Степанов. - М. : Наука, 1971. - 145 с.

Теория систем и методы системного анализа в управлении и связи / В.Н. Волкова, В.А. Воронков, А.А. Денисов и др. -М. : Радио и связь, 1983. - 248 с.

Размещено на Allbest.ru

...

Подобные документы

    Теоретические положения симплекс-метода и постоптимального анализа. Построение математической модели задачи. Нахождение ценностей ресурсов. Определение относительных и абсолютных диапазонов изменения уровней запасов дефицитных и недефицитных ресурсов.

    курсовая работа , добавлен 19.11.2010

    Создание математической модели движения шарика, подброшенного вертикально вверх, от начала падения до удара о землю. Компьютерная реализация математической модели в среде электронных таблиц. Определение влияния изменения скорости на дальность падения.

    контрольная работа , добавлен 09.03.2016

    Составление математической модели задачи. Приведение ее к стандартной транспортной задаче с балансом запасов и потребностей. Построение начального опорного плана задачи методом минимального элемента, решение методом потенциалов. Анализ результатов.

    задача , добавлен 16.02.2016

    Описание системы трехмерного визуализатора процесса дефрагментации с точки зрения системного анализа. Исследование преобразований состояний кубика Рубика с помощью математической теории групп. Анализ алгоритмов Тистлетуэйта и Коцембы решения головоломки.

    курсовая работа , добавлен 26.11.2015

    Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.

    задача , добавлен 21.08.2010

    Методы исследования операций для количественного анализа сложных целенаправленных процессов. Решение задач методом полного перебора и оптимальной вставки (определение всевозможных расписаний, их очередности, выбор оптимального). Генератор исходных данных.

    курсовая работа , добавлен 01.05.2011

    Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.

    курсовая работа , добавлен 25.11.2011

    Расчет эффективности ведения многоотраслевого хозяйства, отображение связей между отраслями в таблицах балансового анализа. Построение линейной математической модели экономического процесса, приводящей к понятию собственного вектора и значения матрицы.

    реферат , добавлен 17.01.2011

    Решение систем уравнений по правилу Крамера, матричным способом, с использованием метода Гаусса. Графическое решение задачи линейного программирования. Составление математической модели закрытой транспортной задачи, решение задачи средствами Excel.

    контрольная работа , добавлен 27.08.2009

    Анализ исследований в области лечения диабета. Использование классификаторов машинного обучения для анализа данных, определение зависимостей и корреляции между переменными, значимых параметров, а также подготовка данных для анализа. Разработка модели.

Лекция 1: Системный анализ как методология решения проблем

Необходимо уметь мыслить абстрактно, чтобы по-новому воспринимать окружающий нас мир.

Р.Фейнман

Одним из направлений перестройки в высшем образовании является преодоление недостатков узкой специализации, усиление междисциплинарных связей, развитие диалектического видения мира, системного мышления. В учебный план уже многих вузов введены общие и специальные курсы, реализующие эту тенденцию: для инженерных специальностей — «методы проектирования», «системотехника»; для военных и экономических специальностей — «иcследование операций»; в административном и политическом управлении — «политология», «футурология»; в прикладных научных исследованиях — «имитационное моделирование», «методология эксперимента» и т.д. К числу таких дисциплин принадлежит и курс системного анализа — типично меж- и наддисциплинарный курс, обобщающий методологию исследования сложных технических, природных и социальных систем.

1.1 Системный анализ в структуре современных системных исследований

В настоящее время в развитии наук наблюдаются 2 противоположные тенденции:

  1. Дифференциации, когда при увеличении знаний и появлении новых проблем из более общих наук выделяются частные науки.
  2. 2. Интеграция, когда более общие науки возникают в результате обобщения и развития тех или иных разделов смежных наук и их методов.

В основе процессов дифференциации и интеграции лежат 2 фундаментальных принципа материалистической диалектики:

  1. принцип качественного своеобразия различных форм движения материи, опр. необходимость изучать отдельные аспекты материального мира;
  2. принцип материального единства мира, опр. необходимость получать целостное представление о каких-либо объектах материального мира.

В результате проявления интегративной тенденции появилась новая область научной деятельности: системные исследования, которые направлены на решение комплексных крупномасштабных проблем большой сложности.

В рамках системных исследований развиваются такие интеграционные науки, как: кибернетика, исследование операций, системотехника, системный анализ, искуственный интеллект и другие. Т.е. речь идет о создании ЭВМ 5 поколения (чтобы убрать всех посредников между ЭВМ и машиной. Пользователь неквалифицированный.), используется интеллектуальный интерфейс.

Системный анализ разрабатывает системную методологию решения сложных прикладных проблем, опираясь на принципы системного подхода и общей теории систем, развития и методологически обобщая концептуальный (идейный) и математический аппарат кибернетики, исследования операций и системотехники.

Системный анализ представляет собой новое научное направление интеграционного типа, которое разрабатывает системную методологию принятия решений и занимает определенное место в структуре современных системных исследований.

Рис.1.1 — Системный анализ

  1. системные исследования
  2. системный подход
  3. конкретные системные концепции
  4. общая теория систем (метатеория по отношению к конкретным системам)
  5. диалектический материализм (философские проблемы системных исследований)
  6. научные системные теории и модели (учение о биосфере земли; теория вероятностей; кибернетика и др.)
  7. технические системные теории и разработки — исследование операций; системотехника, системный анализ и др.
  8. частные теории системы.

1.2 Классификация проблем по степени их структуризации

Согласно классификации, предложенной Саймоном и Ньюэллом, все множество проблем в зависимости от глубины их познания подразделяется на 3 класса:

  1. хорошо структурированные или количественно выраженные проблемы, которые поддаются математической формализации и решаются с использованием формальных методов;
  2. неструктуризованные или качественно выраженные проблемы, которые описываются лишь на содержательном уровне и решаются с использованием неформальных процедур;
  3. слабоструктуризованные (смешанные проблемы), которые содержат количественные и качественные проблемы, причем качественные, малоизвестные и неопределенные стороны проблем имеют тенденцию доменирования.

Эти проблемы решаются на основе комплексного использования формальных методов и неформальных процедур. За основу классификации взята степень структуризации проблем, причем структура всей проблемы определяется 5-ю логическими элементами:

  1. цель или ряд целей;
  2. альтернативы достижения целей;
  3. ресурсы, расходуемые на реализацию альтернатив;
  4. модель или ряд моделей;
  5. 5.критерий выбора предпочтительной альтернативы.

Степень структуризации проблемы определяется тем, на сколько хорошо выделены и осознаны указанные элементы проблем.

Характерно, что одна и та же проблема может занимать различное место в таблице классификации. В процессе все более глубокого изучения, осмысления и анализа проблема может превратиться из неструктуризованной в слабоструктуризованную, а затем из слабоструктуризованной в структуризованную. При этом выбор метода решения проблемы определяется ее местом в таблице классификаций.

Рис.1.2 — Таблица классификаций

  1. выявление проблемы;
  2. постановка проблемы;
  3. решение проблемы;
  4. неструктуризованная проблема (может решаться с помощью эвристических методов);
  5. методы экспертных оценок;
  6. слабо структуризованная проблема;
  7. методы системного анализа;
  8. хорошо структуризованная проблема;
  9. методы исследования операций;
  10. принятие решения;
  11. реализация решения;
  12. оценка решения.

1.3 Принципы решения хорошо структуризованных проблем

Для решения проблем этого класса широко используются математические методы И.О. В операционном исследовании можно выделить основные этапы:

  1. Определение конкурирующих стратегий достижения цели.
  2. Построение математической модели операции.
  3. Оценка эффективностей конкурирующих стратегий.
  4. Выбор оптимальной стратегии достижения целей.

Математическая модель операции представляет собой функционал:

E = f(x∈x → , {α}, {β}) ⇒ extz

  • Е — критерий эффективности операций;
  • x — стратегия оперирующей стороны;
  • α — множество условий проведения операций;
  • β — множество условий внешней среды.

Модель позволяет оценить эффективность конкурирующих стратегий и выбрать из их числа оптимальную стратегию.

  1. постоянство проблемы
  2. ограничения
  3. критерий эффективности операций
  4. математическая модель операции
  5. параметры модели, но часть параметров, как правило, не известна, поэтому (6)
  6. прогнозирование информации (т.е. нужно предугадать ряд параметров)
  7. конкурирующие стратегии
  8. анализ и стратегии
  9. оптимальная стратегия
  10. утвержденная стратегия (более простая, но которая удовлетворяет еще ряду критериев)
  11. реализация решения
  12. корректировка модели

Критерий эффективности операции должен удовлетворять ряду требований:

  1. Представительность, т.е. критерий должен отражать основную, а не второстепенную цель операции.
  2. Критичность — т.е. критерий должен изменяться при изменении параметров операций.
  3. Единственность, так как только в этом случае возможно найти строгое математическое решение задачи оптимизации.
  4. Учет стохастичности, которая связана обычно со случайным характером некоторых параметров операций.
  5. Учет неопределенностей, которая связана с отсутствием какой-либо информации о некоторых параметров операций.
  6. Учет противодействия, которое вызывает часто сознательный противник, управляющий полными параметрами операций.
  7. Простая, т.к. простой критерий позволяет упростить математические выкладки при поиске opt. решения.

Приведем схему, которая иллюстрирует основные требования к критерию эффективности исследования операций.

Рис. 1.4 — Схема, которая иллюстрирует требования к критерию эффективности исследования операций

  1. постановка проблемы (вытекают 2 и 4 (ограничения));
  2. критерий эффективности;
  3. задачи верхнего уровня
  4. ограничения (мы организуем вложенность моделей);
  5. связь с моделями верхнего уровня;
  6. представительность;
  7. критичность;
  8. единственность;
  9. учет стохастичности;
  10. учет неопределенности;
  11. учет противодействия (теория игр);
  12. простота;
  13. обязательные ограничения;
  14. дополнительные ограничения;
  15. искусственные ограничения;
  16. выбор главного критерия;
  17. перевод ограничений;
  18. построение обобщенного критерия;
  19. оценка математического отид-я;
  20. построение доверительных интервалов:
  21. анализ возможных вариантов (есть система; мы точно не знаем, какова интенсивность вх. потока; мы можем только с определенной вероятностью предположить ту или иную интенсивность; затем взвешиваем выходящие варианты).

Единственность — чтобы можно было решить задачу строго математическими методами.

Пункты 16, 17 и 18 — это способы, которые позволяют избавиться от многокритериальности.

Учет стохастичности — большая часть параметров имеет стохастическое значение. В ряде случаев стох. мы задаем в виде ф-и распределения, следовательно, сам критерий необходимо усреднить, т.е. применять математические ожидания, следовательно, п.19, 20, 21.

1.4 Принципы решения неструктуризованных проблем

Для решения проблем этого класса целесообразно использовать методы экспертных оценок.

Методы экспертных оценок применяются в тех случаях, когда математическая формализация проблем либо невозможна в силу их новизны и сложности, либо требует больших затрат времени и средств. Общим для всех методов экспертных оценок является обращение к опыту, указанию и интуиции специалистов, выполняющих функции экспертов. Давая ответы на поставленный вопрос, эксперты являются как бы датчиками информации, которая анализируется и обобщается. Можно утверждать, следовательно: если в диапазоне ответов имеется истинный ответ, то совокупность разразненных мнений может быть эффективно синтезирована в некоторое обобщенное мнение, близкое к реальности. Любой метод экспертных оценок представляет собой совокупность процедур, направленных на получение информации эвристического происхождения и обработку этой информации с помощью математико-статистических методов.

Процесс подготовки и проведения экспертизы включает следующие этапы:

  1. определение цепей экспертизы;
  2. формирование группы специалистов-аналитиков;
  3. формирование группы экспертов;
  4. разработка сценария и процедур экспертизы;
  5. сбор и анализ экспертной информации;
  6. обработка экспертной информации;
  7. анализ результатов экспертизы и принятия решений.

При формировании группы экспертов необходимо учитывать их индивидуальные х-ки, которые влияют на результаты экспертизы:

  • компетентность (уровень профессиональной подготовки)
  • креативность (творческие способности человека)
  • конструктивность мышления (не «летать» в облаках)
  • конформизм (подверженность влиянию авторитета)
  • отношение к экспертизе
  • коллективизм и самокритичность

Методы экспертных оценок применяются достаточно успешно в следующих ситуациях:

  • выбор целей и тематики научных исследований
  • выбор вариантов сложных технических и социально-экономических проектов и программ
  • построение и анализ моделей сложных объектов
  • построение критериев в задачах векторной оптимизации
  • классификация однородных объектов по степени выраженности какого-либо свойства
  • оценка качества продукции и новой техники
  • принятие решений в задачах управления производством
  • перспективное и текущее планирование производства, НИР и ОКР
  • научно-техническое и экономическое прогнозирование и т.д. и т.п.

1.5 Принципы решения слабоструктуризованных проблем

Для решения проблем этого класса целесообразно использовать методы системного анализа. Проблемы, решаемые с помощью системного анализа, имеют ряд характерных особенностей:

  1. принимаемое решение относится к будущему (завод, которого пока нет)
  2. имеется широкий диапазон альтернатив
  3. решения зависят от текущей неполноты технологических достижений
  4. принимаемые решения требуют больших вложений ресурсов и содержат элементы риска
  5. не полностью определены требования, относящиеся к стоимости и времени решения проблемы
  6. проблема внутренняя сложна в следствие того, что для ее решения необходимо комбинирование различных ресурсов.

Основные концепции системного анализа состоят в следующем:

  • процесс решения проблемы должен начинаться с выявления и обоснования конечной цели, которой хотят достичь в той или иной области и уже на этом основании определяются промежуточные цели и задачи
  • к любой проблеме необходимо подходить, как к сложной системе, выявляя при этом все возможные подроблемы и взаимосвязи, а также последствия тех или иных решений
  • в процессе решения проблемы осуществляется формирование множества альтернатив достижения цели; оценка этих альтернатив с помощью соответствующих критериев и выбор предпочтительной альтернативы
  • организационная структура механизма решения проблемы должна подчиняться цели или ряду целей, а не наоборот.

Системный анализ представляет собой многошаговый итеративный процесс, причем исходным моментов этого процесса является формулировка проблемы в некоторой первоначальной форме. При формулировке проблемы необходимо учитывать 2 противоречивых требования:

  1. проблема должна формулироваться достаточно широко, чтобы ничего существенного не упустить;
  2. проблема должна формироваться т.о., чтобы она была обозримой и могла быть структуризована. В ходе системного анализа степень структуризации проблемы повышается, т.е. проблема формулируется все более четко и исчерпывающе.

Рис. 1.5 — Один шаг системного анализа

  1. постановка проблемы
  2. обоснование цели
  3. формирование альтернатив
  4. исследование ресурса
  5. построение модели
  6. оценка альтернатив
  7. принятие решения (выбор одного решения)
  8. анализ чувствительности
  9. проверка исходных данных
  10. уточнение конечной цели
  11. поиск новых альтернатив
  12. анализ ресурсов и критериев

1.6 Основные этапы и методы СА

СА предусматривает: разработку системного метода решения проблемы, т.е. логически и процедурно организованную последовательность операций, направленных на выбор предпочтительной альтернативы решения. СА реализуется практически в несколько этапов, однако в отношении их числа и содержании пока еще нет единства, т.к. Э большое разнообразие прикладных проблем.

Приведем таблицу, которая иллюстрирует основные закономерности СА з-х различных научных школ.

Основные этапы системного анализа
По Ф. Хансману
ФРГ, 1978 год
По Д. Джеферсу
США, 1981 год
По В. В. Дружинину
СССР, 1988 год
  1. Общая ориентация в проблеме (эскизная постановка проблемы)
  2. Выбор соответствующих критериев
  3. Формирование альтернативных решений
  4. Выделение существенных факторов внешней среды
  5. Построение модели и ее проверка
  6. Оценка и прогноз параметров модели
  7. Получение информации на основе модели
  8. Подготовка к выбору решения
  9. Реализация и контроль
  1. Выбор проблемы
  2. Постановка задачи и ограничение степени ее сложности
  3. Установление иерархии, целей и задач
  4. Выбор путей решения задачи
  5. Моделирование
  6. Оценка возможных стратегий
  7. Внедрение результатов
  1. Выделение проблемы
  2. Описание
  3. Установление критериев
  4. Идеализация (предельное упрощение, попытка построения модели)
  5. Декомпозиция (разбивка по частям, нахождения решений по частям)
  6. Композиция («склеивание» частей вместе)
  7. Принятие наилучшего решения

В научный инструментарий СА входят следующие методы:

  • метод сценариев (пытаются дать описание системы)
  • метод дерева целей (есть конечная цель, она разбивается на подцели, подцели на проблемы и т.д., т.е. декомпозиция до задач, которые мы можем решить)
  • метод морфологического анализа (для изобретений)
  • методы экспертных оценок
  • вероятностно-статистические методы (теория МО, игр и т.д.)
  • кибернетические методы (объект в виде черного ящика)
  • методы ИО (скалярная opt)
  • методы векторной оптимизации
  • методы имитационного моделирования (например, GPSS)
  • сетевые методы
  • матричные методы
  • методы экономического анализа и др.

В процессе СА на разных его уровнях применяются различные методы, в которых эвристика сочетается с формализмом. СА выполняет роль методологического каркаса, объединяющего все необходимые методы, исследовательские приемы, мероприятия и ресурсы для решения проблем.

1.7 Система предпочтений ЛПР и системный подход к процессу принятия решений.

Процесс принятия решения состоит в выборе рационального решения из некоторого множества альтернативных решений с учетом системы предпочтений ЛПР. Как и всякий процесс, в котором участвует человек, имеет 2 стороны: объективную и субъективную.

Объективная сторона — это то, что реально вне сознания человека, а субъективная — это то, что находит отражение в сознании человека, т.е. объективное в сознании человека. Объективное отражается в сознании человека не всегда достаточно адекватно, однако от сюда не следует, что не может быть правильных решений. Практически верным считается такое решение, которое в главных чертах правильно отражает обстановку и соответствует поставленной задаче.

Система предпочтений ЛПР определяется многими факторами:

  • понимание проблемы и перспектив развития;
  • текущая информация о состоянии некоторой операции и внешние условия ее протекания;
  • директивы от вышестоящих инстанций и различного рода ограничений;
  • юридические, экономические, социальные, психологические факторы, традиции и др.

Рис. 1.6 — Система предпочтений ЛПР

  1. директивы от вышестоящих инстанций о целях и задачах операций (тех. процессы, прогнозирование)
  2. ограничения по ресурсам, степени самостоятельности и др.
  3. переработка информации
  4. операция
  5. внешние условия (внешняя среда), а) детерминирование; б) стохастические (ЭВМ отказывает через случайный интервал t); в) организованное противодействие
  6. информация о внешних условиях
  7. рациональное решение
  8. синтез управления (зависит от системы)

Находясь в этих тисках, ЛПР должен нормировать множество потенциально возможных решений из них. Из них отобрать 4-5 лучших и из них — 1 решение.

Системный подход к процессу принятия решений состоит в реализации 3-х взаимосвязанных процедур:

  1. Выделяется множество потенциально возможных решений.
  2. Из их числа отбирается множество конкурирующих решений.
  3. Выбирается рациональное решение с учетом системы предпочтений ЛПР.

Рис. 1.7 — Системный подход к процессу принятия решений

  1. возможные решения
  2. конкурирующие решения
  3. рациональное решение
  4. цель и задачи операции
  5. информация о состоянии операции
  6. информация о внешних условиях
    1. стохастические
    2. организованное противодействие
  7. ограничение по ресурсам
  8. ограничение по степени самостоятельности
  9. дополнительные ограничения и условия
    1. юридические факторы
    2. экономические факторы
    3. социологические факторы
    4. психологические факторы
    5. традиции и другое
  10. критерий эффективности

Современный системный анализ является прикладной наукой, нацеленной на выяснение причин реальных сложностей, возникших перед «обладателем проблемы» и на выработку вариантов их устранения. В наиболее развитой форме системный анализ включает и непосредственное, практическое улучшающее вмешательство в проблемную ситуацию.

Системность не должна казаться неким нововведением, последним достижением науки. Системность есть всеобщее свойство материи, форма ее существования, а значит, и неотъемлемое свойство человеческой практики, включая мышление. Всякая деятельность может быть менее или более системной. Появление проблемы — признак недостаточной системности; решение проблемы — результат повышения системности. Теоретическая мысль на разных уровнях абстракции отражала системность мира вообще и системность человеческого познания и практики. На философском уровне — это диалектический материализм, на общенаучном — системология и общая теория систем, теория организации; на естественно-научном — кибернетика. С развитием вычислительной техники возникли информатика и искусственный интеллект.

В начале 80-х годов стало очевидным, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение». Системность становится не только теоретической категорией, но и осознанным аспектом практической деятельности. Поскольку большие и сложные системы по необходимости стали предметом изучения, управления и проектирования, потребовалось обобщение методов исследования систем и методов воздействия на них. Должна была возникнуть некая прикладная наука, являющаяся «мостом» между абстрактными теориями системности и живой системной практикой. Она и возникла — сначала, как мы отмечали, в различных областях и под разными названиями, а в последние годы сформировалась в науку, которая получила название «системный анализ».

Особенности современного системного анализа вытекают из самой природы сложных систем. Имея в качестве цели ликвидацию проблемы или, как минимум, выяснение ее причин, системный анализ привлекает для этого широкий спектр средств, использует возможности различных наук и практических сфер деятельности. Являясь по существу прикладной диалектикой, системный анализ придает большое значение методологическим аспектам любого системного исследования. С другой стороны, прикладная направленность системного анализа приводит к использованию всех современных средств научных исследований — математики, вычислительной техники, моделирования, натурных наблюдений и экспериментов.

В ходе исследования реальной системы обычно приходится сталкиваться с самыми разнообразными проблемами; быть профессионалом в каждой из них невозможно одному человеку. Выход видится в том, чтобы тот, кто берется осуществлять системный анализ, имел образование и опыт, необходимые для опознания и классификации конкретных проблем, для определения того, к каким специалистам следует обратиться для продолжения анализа. Это предъявляет особые требования к специалистам-системщикам: они должны обладать широкой эрудицией, раскованностью мышления, умением привлекать людей к работе, организовывать коллективную деятельность.

Прослушав настоящий курс лекций, или прочитав несколько книг по данной теме нельзя стать специалистом по системному анализу. Как выразился У.Шекспир: «Если бы делать было бы столь легко, как знать, что надо делать — часовни были бы соборами, хижины — дворцами». Профессионализм приобретается в практике.

Рассмотрим любопытный прогноз наиболее быстро расширяющихся сфер занятости в США: Динамика в % 1990-2000гг.

  • средний медицинский персонал — 70%
  • специалисты по радиационным технологиям — 66%
  • агенты бюро путешествий — 54%
  • аналитики компьютерных систем — 53%
  • программисты — 48%
  • инженеры-электронщики — 40%

Развитие системных представлений

Что означает само слово «система» или «большая система», что означает «действовать системно»? Ответы на эти вопросы мы будем получать постепенно, повышая уровень системности наших знаний, в чем и состоит цель данного курса лекций. Пока же нам достаточно тех ассоциаций, которые возникают при употреблении в обычной речи слова «система» в сочетании со словами «общественно-политическая», «Солнечная», «нервная», «отопительная» или «уравнений», «показателей», «взглядов и убеждений». Впоследствии мы будем подробно и всесторонне рассматривать признаки системности, а сейчас отметим только самые очевидные и обязательные из них:

  • структурированность системы;
  • взаимосвязанность составляющих ее частей;
  • подчиненность организации всей системы определенной цели.

Системность практической деятельности

По отношению, например, к человеческой деятельности указанные признаки очевидны, поскольку каждый из нас легко обнаружит их в своей собственной практической деятельности. Всякое наше осознанное действие преследует вполне определенную цель; во всяком действии легко увидеть его составные части, более мелкие действия. При этом составные части выполняются не в произвольном порядке, а в определенной их последовательности. Это и есть определенная, подчиненная цели взаимосвязанность составных частей, которая и является признаком системности.

Системность и алгоритмичность

Другое название для такого построения деятельности — алгоритмичность. Понятие алгоритма возникло вначале в математике и означало задание точно определенной последовательности однозначно понимаемых операций над числами или другими математическими объектами. В последние годы начинает осознаваться алгоритмичность любой деятельности. Уже говорят не только об алгоритмах принятия управленческих решений, об алгоритмах обучения, алгоритмах игры в шахматы, но и об алгоритмах изобретательства, алгоритмах композиции музыки. Подчеркнем, что при этом делается отход от математического понимания алгоритма: сохраняя логическую последовательность действий, допускается, что в алгоритме могут присутствовать неформализованные действия. Таким образом, явная алгоритмизация любой практической деятельности является важным свойством ее развития.

Системность познавательной деятельности

Одна из особенностей познания — наличие аналитического и синтетического образов мышления. Суть анализа состоит в разделении целого на части, в представлении сложного в виде совокупности более простых компонент. Но чтобы познать целое, сложное, необходим и обратный процесс — синтез. Это относится не только к индивидуальному мышлению, но и к общечеловеческому знанию. Скажем так, расчлененность мышления на анализ и синтез и взаимосвязанность этих частей являются важнейшим признаком системности познания.

Системность как всеобщее свойство материи

Здесь нам важно выделить ту мысль, что системность — это не только свойство человеческой практики, включающей и внешнюю активную деятельность, и мышление, но свойство всей материи. Системность нашего мышления вытекает из системности мира. Современные научные данные и современные системные представления позволяют говорить о мире как о бесконечной иерархической системе систем, находящихся в развитии и на разных стадиях развития, на разных уровнях системной иерархии.

Подведем итог

В заключении, в качестве информации к размышлению, приведем схему изображающую связь вопросов, рассмотренных выше.

Рис 1.8 — Связь вопросов рассмотренных выше

Истоки системного анализа

Системный анализ возник в эпоху разработки компьютерной техники. Успех его применения при решении сложных задач во многом определяется современными возможностями информационных технологий . Н. Н. Моисеев приводит, по его выражению, довольно узкое определение системного анализа: «Системный анализ - это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем - технических, экономических, экологических и т.д. Результатом системных исследований является, как правило, выбор вполне определенной альтернативы: плана развития региона, параметров конструкции и т. д. Поэтому истоки системного анализа, его методические концепции лежат в тех дисциплинах, которые занимаются проблемами принятия решений: исследование операций и общая теория управления ».

Сущность системного анализа

Ценность системного подхода состоит в том, что рассмотрение категорий системного анализа создает основу для логического и последовательного подхода к проблеме принятия решений. Эффективность решения проблем с помощью системного анализа определяется структурой решаемых проблем.

Классификация проблем

Согласно классификации, все проблемы подразделяются на три класса:

  • хорошо структурированные (well-structured ), или количественно сформулированные проблемы, в которых существенные зависимости выяснены очень хорошо;
  • неструктурированные (unstructured ), или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны;
  • слабо структурированные (ill-structured ), или смешанные проблемы, которые содержат как качественные элементы, так и малоизвестные, неопределенные стороны, которые имеют тенденцию доминировать.

Методы решения

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций , которая состоит в построении адекватной математической модели (например, задачи линейного , нелинейного , динамического программирования , задачи теории массового обслуживания , теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры:

  • абстрагирование и конкретизация
  • анализ и синтез, индукция и дедукция
  • формализация и конкретизация
  • композиция и декомпозиция
  • линеаризация и выделение нелинейных составляющих
  • структурирование и ре структурирование
  • макетирование
  • реинжиниринг
  • алгоритмизация
  • моделирование и эксперимент
  • программное управление и регулирование
  • распознавание и идентификация
  • кластеризация и классификация
  • экспертное оценивание и тестирование
  • верификация

и другие методы и процедуры.

Процедура принятия решений

Для решения слабо структурированных проблем используется методология системного анализа, системы поддержки принятия решений (СППР). Рассмотрим технологию применения системного анализа к решению сложных задач.

Процедура принятия решений согласно включает следующие основные этапы:

  1. формулировка проблемной ситуации;
  2. определение целей;
  3. определение критериев достижения целей;
  4. построение моделей для обоснования решений;
  5. поиск оптимального (допустимого) варианта решения;
  6. согласование решения;
  7. подготовка решения к реализации;
  8. утверждение решения;
  9. управление ходом реализации решения;
  10. проверка эффективности решения.

Для многофакторного анализа, алгоритм можно описать и точнее:

  1. описание условий (факторов) существования проблем, И, ИЛИ и НЕ связывание между условиями;
  2. отрицание условий, нахождение любых технически возможных путей. Для решения нужен хотя бы один единственный путь. Все И меняются на ИЛИ, ИЛИ меняются на И, а НЕ меняются на подтверждение, подтверждение меняется на НЕ-связывание;
  3. рекурсивный анализ вытекающих проблем из найденных путей, то есть п.1 и п.2 заново для каждой подпроблемы;
  4. оценка всех найденных путей решений по критериям исходящих подпроблем, сведенным к материальной или иной общей стоимости.

См. также

  • Институт системного анализа РАН
  • Теория принятия решений , Система поддержки принятия решений

Источники

Ссылки

  • Tsisa.ru - ресурс о теории систем и системном анализе

Wikimedia Foundation . 2010 .

  • Исследование операций
  • Коллоди, Карло

Смотреть что такое "Системный анализ" в других словарях:

    СИСТЕМНЫЙ АНАЛИЗ - 1) в узком смысле совокупность методологич. средств, используемых для подготовки и обоснования решений по сложным проблемам политич., воен., социального, экономич., науч., тех нйч. характера. 2) В широком смысле термин «С. а.» иногда… … Философская энциклопедия

    системный анализ - СИСТЕМНЫЙ АНАЛИЗ совокупность методов и средств, используемых при исследовании и конструировании сложных и сверхсложных объектов, прежде всего методов выработки, принятия и обоснования решений при проектировании, создании и управлении… … Энциклопедия эпистемологии и философии науки

    системный анализ - Совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам различного характера. Он опирается на системный подход, а также на ряд математических методов и современных методов управления. Основная … Справочник технического переводчика

    Системный Анализ - (systems analysis) Изучение или анализ задач и проблем системы, направленные на развитие и усовершенствование этой системы путем внедрения компьютеров. Системный анализ завершается точными рекомендациями того, что надо сделать, определением… … Словарь бизнес-терминов

    СИСТЕМНЫЙ АНАЛИЗ Современная энциклопедия

    СИСТЕМНЫЙ АНАЛИЗ - совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера. Опирается на системный подход, а также на ряд… … Большой Энциклопедический словарь

    Системный анализ - СИСТЕМНЫЙ АНАЛИЗ, совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера. Опирается на системный подход … Иллюстрированный энциклопедический словарь

    СИСТЕМНЫЙ АНАЛИЗ - (от греч. systema целое, составленное из частей и анализ) совокупность методов и средств исследования сложных, многоуровневых и многокомпонентных систем, объектов, процессов, опирающихся на комплексный подход, учет взаимосвязей и взаимодействий… … Экономический словарь

    системный анализ - Исследование функциональных и структурных взаимосвязей природных явлений, рассматриваемых в качестве системы, в которой определяются границы, возможности использования, а также положение и роль в следующей по рангу природной системе. Syn.:… … Словарь по географии