Бюджетный чпу печатных плат станок своими руками. Делаем настольное устройство для изготовления печатных плат в один клик. Получение gcode из gerber-файлов

Драйвера для шаговика, чувак изящно смастерил все без применения микроконтроллера. Почитал я это, глянул на свое сверлило для плат с тугой ручной подачей, и решил нацепить на него управление подачей вверх-вниз. Был куплен драйвер для шаговика, из закромов был вытащен подходящий шаговик от принтера, был куплен дорогущий , который я насадил на вал движка от какого то принтера, потом пришел драйвер и движуха началась.

Вот первая версия моего платосверлила:

Люди с инженерным мышлением сразу заметят наркоманское положение рычага относительно направляющих (шиссот рублев за латунную трубку, и еще столько же за латунный стержень! да луше б я в китае купил линейние подшипники и две направляющих), из-за такого решения шпиндель ходит неравномерно, рывками, и можно переломать некоторое количество сверел, если они из твердосплава. А ради них все собственно и затевалось.

Пока ждал железо, замутил могучую подсветку для этого станка



прибор говорит что ОЧЕНЬ ЯРКО. Но работать комфортно, регулировку подсветки решил не делать

вот фото в работе

Начал пилить привод оси У. Решил просто добавить немного деревяшек к существующей конструкции

Обратите внимание на нанотехнологичное соединение вала с ходовым винтом

Для этого был куплен датчик стопсигнала от ваза какого то, и безжалостно раздолбан, чтобы осталась только латунная трубка

Настала очередь электроники.
Поигрался в протеусе и на макетке со схемой и кодом, и вытравил плату для будущего контроллера


В качестве мозгов станка выступит ардуино нано, ибо кодить для чего-то более серьезного я не могу. Управление при помощи потенциометра и энкодера с кнопкой.
Сам драйвер называется в интернете EASY DRIVER, что как бы говорит о простоте работы с ним. Это верно. Ему нужно два сигнала - STEP и DIR. Первым мы шагаем движком, вторым говорим, в какую сторону шагать. После пробы топорной библиотеки для него я решил написать всё сам, получилось в итоге неплохо.
Питается это всё от ноутбучного блока питания на 19 вольт. Драйвер может пропустить через себя до 30 вольт, а мотор с патроном рассчитан на 24, если не ошибаюсь, оборотов у него все таки маловато.

Видео первого теста:

Энкодером можно двигать шпиндель вверх-вниз по оси У, переменный резистор задает расстояние, на которое шпиндель сдвинется за один щелчок энкодера, а так же задает скорость подачи при нажатии кнопки «СВЕРЛИТЬ!» Очень удобно оказалось использовать заранее подготовленный алгоритм проделывания отверстия. Так же для понта приделал валявшийся дисплей. Подключил его с помощью вот такого ? чтобы сэкономить ноги ардуины

Прикрутил все платы и ручки на места, и вот что получилось:

посмотреть








Помучившись с кодом заставил все это работать как мне нужно, и вот готовое устройство.

Теперь осталось надумать новый безумный проект, чтобы опробовать свое поделие в боевых условиях, а так же приделать педаль, чтобы освободить руки.
Если кого что заинтересовало в обзоре, спрашивайте, личка, комменты, как угодно

Планирую купить +25 Добавить в избранное Обзор понравился +63 +109

Производим сверлильные мини станки с ЧПУ для изготовления печатных плат. У нас можно купить оборудование для сверления и фрезеровки плат и корпусов электронной аппаратуры по доступной цене.

Станки СК «Роутер» для изготовления печатных плат

В каталоге продукции СК «Роутер» оборудование для производства печатных плат представлено сверлильными станками с ЧПУ. Модели для печатных плат сконструированы на базе наших фрезерно-гравировальных станков и комплектуются специальными высокоскоростными шпинделями. Наличие такого шпинделя позволяет сверлить и фрезеровать печатные платы с высокой скоростью и точностью.

Если требуется станок более универсального применения, можно посмотреть наши фрезерные мини станки в стандартной комплектации и сверлильное оборудование широкого назначения .

Область применения

Мини станки для печатных плат СК «Роутер» применяются на предприятиях различных отраслей: от общепроизводственных до авиационной и космической. Кроме сверления печатных плат на таких станках можно успешно осуществлять и фрезеровку корпусов радиоэлектронной аппаратуры. Таким образом, возможно реализовать законченное производство электронных приборов.

Комплектация сверлильных станков

В состав базовой поставки станков для печатных плат входит набор оснастки, достаточный для начала изготовления плат в серийном режиме. Вместе с тем, для повышения производительности и удобства работы на станке оборудование может быть доукомплектовано дополнительными опциями: системой ЧПУ, автоматической сменой инструмента, СОЖ и другой технологичной оснасткой.

Видео сверления печатной платы

Посмотрите процесс изготовления печатной платы на одном из наших сверлильных станков:

Как сейчас помню, 23го февраля наткнулся на пост на тудее, где человек хотел гравировать печатные платы на 3д принтере. В комментариях посоветовали не мучать животинку принтер и обратить внимание на проект Cyclone PCB Factory.

Загорелся идеей. В последствии, в какой то момент я даже пожалею что взялся, но это будет сильно позже.

О собственном ЧПУ фрезере для печатных плат я мечтал очень давно, это была вторая хотелка после 3д принтера. Решил повторить проект, тем более что кое-что у меня в закромах уже было.

Скачал файлы проекта и не долго думая принялся печатать детальки. Управился примерно за неделю. Распечатал все, кроме оси Z.

Подробных фотографий всех деталей не осталось. Кому-то делал скриншот настроек печати и результата. Сопло 0,4, высота слоя 0,24. Печатал и слоем 0,28 - вполне нормально печатает.

Станок захотелось сделать цветным, поэтому разные детали печатал пластиком разного цвета. Пластик использовал ABS Prostoplast. Цвета космос, травяной зеленый, алеющий закат.

Лучше бы напечатал все серым космосом. Красный и зеленый оказались достаточно хрупкими и часть деталей дали трещины при сборке. Что-то вылечилось ацетоном, что-то заново перепечатал.

Комплектующие:

Три свободных шаговых двигателя у меня было, покупал их под проект 3д принтера, решил временно задействовать.

Направляющие 8мм добыл из струйных принтеров, раздербанив несколько принтеров на органы. Шерстил местные комиссионки, авито. Донорами стали струйные принтеры HP по 100-200 рублей за штуку. Длинная направляющая пилилась на две части, на оси X и Z.

Прижим бумаги с которого я снял резиновые ролики пошел на ось Y. Длины как раз хватило чтоб обрезать по накатку.

Линейные подшипники оставались с 3д принтера, принтер я перевел на бронзовые втулки в горошек.

В качестве электроники решил использовать одну из своих Arduino Uno на atmega328p. Докупил на Али плату cnc shield 3.0 для Arduino за 200 с копейками рублей.

Блок питания 12В из Леруа Мерлен. Покупал чтоб запитать три 12В галогенки, но он их не потянул. Пришлось отремонтировать трансформатор для галогенок Tachibra, а этот блок питания прижился на станочке.

На 3д принтер я поставил драйвера 8825, с принтера у меня остались a4988. Их и поставил на станок.

Подшипники 608ZZ заказал на Али, десяток за 200 с копейками рублей..

В качестве шпинделя планировал использовать свой китайский гравер GoldTool.

Резьбовые шпильки м8 достались с работы на халяву, остались с какого-то монтажа. Подобрал практически "с помойки".

Пока печатался проект и ехали детали с Али, попросил знакомого мебельщика вырезать из МДФ основание и столик. Он не поленился и не пожалел обрезков, выпилил 2 основания и 2 столика. На фото один из комплектов.

Фанеры у меня в закромах не было, купить лист фанеры не позволило жадное животное. МДФ кстати подошел очень хорошо.

Начал собирать станок. Все бы ничего, но стандартные гайки на 13 проваливались и болтались внутри шестерни, гайки на 14 не лезли в шестерни. Пришлось 14е гайки вплавить в шестерни паяльником.

Шестерни или болтались на осях шагового двигателя, или не лезли.

Гайки винтов м3 прокручивались в посадочных гнездах.

Нашел у себя несколько квадратных гаек под резьбу м3 (разбирал когда-то какой-то штеккер, из него), которые идеально подошли и не прокручивались. На работе еще нашел таких штеккеров и пустил на гайки. В основном это крепления направляющих. Обычные гайки для резьбы м3 приходилось придерживать тонким жалом отвертки, чтоб не прокручивались.

Как-то собрал. Позже читая темы про Cyclone, наткнулся на переработанные детальки станка под метрический крепеж. Из этого набора заново распечатал шестерни и крепление концевика по оси Z. Жаль мне не попался этот набор запчастей раньше. Печатал бы эти запчасти.

В надежде применить свой китайский гравер распечатал сначала одно крепление под дремель из комплекта, потом второе. Не подошло, мой гравер ни в одно не лез. Оригинальный же дремель, самый простой, стоил три с небольшим тысячи рублей. За что???

Лишние запчасти.

И еще, линейные подшипники в своих гнездах болтались как что-то в проруби.

Пришлось за тысячу с небольшим заказать на али 200Вт шпиндель с цанговым зажимом ER11. Удачно попал на скидки и использовал купон.

Пока ехал шпиндель, распечатал под него крепление из комплекта станка. И снова прокол, оно такое же ущербное. И ни слова про хомут для шпинделя.

В итоге нашел и распечатал вот это крепление под 52мм шпиндель После небольшой доработки крепление встало на станок, в него хорошо вошел шпиндель.

А вот подшипники на втулках Cargo пришлось из них убрать. Поставил китайские LM8UU

Отдельно хочется сказать про китайские подшипники 608zz. Подшипники с новья с люфтом. Ужасные. Одно что стоят сравнительно не дорого. У нас подшипники не искал.

Кстати подшипники в посадочные места вошли так же, как нечто в прорубь. В посадочных местах подшипники болтались. Не знаю, баг это или фича. В итоге на обоймы подшипников мотнул изоленты.

Китайские lm8uu и lm8luu от 3д принтера так же оказались хламом. В итоге на ось Y сделал подшипники скольжения на втулках Cargo 141091. Распечатал пластиковую обойму и в нее вставил по паре втулок. Получившиеся подшипники вставил в крепления.

На ось Z выбрал более менее живые lm8uu. На ось X верхний подшипник поставил lm8uu, а вместо двух нижних распечатал пластиковую обойму по размеру lm8luu и в нее вставил пару втулок Cargo.

Удачно я ими в свое время закупился. Пригодились.

Во время сборки станка я и пожалел, что взялся. Но, деваться было некуда, надо было проект завершать. Собрал. Запустил!

Еще немного фотографий процесса сборки.

Самое начало сборки...

Здравствуйте, дорогие друзья! Сегодня мы расскажем Вам про то, как создать ЧПУ из принтера. Основной причиной того, что сейчас так часто в интернете предлагают переделать из принтера или сканеров самодельные устройства, является то, что многие современные периферийные устройства для ПК настолько сложны с функциональной точки зрения, что в переделанном виде позволяют создавать станки, способные выполнять удивительные задачи.

Приступаем к изготовлению

Чтобы начать изготавливать станок ЧПУ из старого принтера, вам потребуются некоторые запчасти, которые входят в струйные принтеры:

  • Приводы, шпильки, направляющие от принтера (желательно использовать несколько старых принтеров; принтеры необязательно должны печатать);
  • Привод от дисковода.
  • Материал для создания корпуса – фанера, ДСП и т.п.
  • Драйверы и контроллеры;
  • Материалы для крепежей.

Полученные станки с числовым программным управлением смогут выполнять различные функции. Всё, в конечном итоге, зависит от устройства, которое будет располагаться на выходе станке. Чаще всего из струйных принтеров делают , выжигатель (при помощи установки выжигателя на выходе устройства) и сверлильные машины для создания печатных плат.

Основой является деревянный ящик из ДСП. Иногда используют готовые, но не составит труда сделать го самостоятельно. Необходимо учесть, что внутри ящика будут располагаться электронные компоненты, контроллеры. Собирать всю конструкцию лучше всего при помощи саморезов. Не забывайте, что детали нужно располагать друг относительно друга под углом 90 градусов и крепить максимально прочно друг к другу.

Создание самодельного станка

Прежде, чем переделать принтеры или сканеры в мини станки, которые смогут выполнять фрезерные работы, следует максимально точно собрать раму конструкции и ее основные составляющие.

На верхнюю крышку устройства требуется установить главные оси, которые являются важными компонентами среди всех профессиональных станков. Осей должно быть всего три, начало работы необходимо производить с крепления оси у. Для того чтобы создать направляющую используют мебельный полоз.

Отдельно отметим создание ЧПУ из сканера. Переделка этого устройства такая же, как и, если бы, под рукой был старый струйный принтер. В любом сканере, есть шаговые двигатели и шпильки, благодаря, которым и производится процесс сканирования. В станке нам пригодятся эти двигатели и шпильки, вместо сканирования и печати будет производится фрезерование, а вместо головки, которая перемещается в принтере, будет использоваться движение фрезерного устройства.

Для вертикальной оси, в самодельном ЧПУ нам пригодятся детали из дисковода (направляющая по которой перемещался лазер).

В принтерах есть так называемые штоки, именно они играют роль ходовых винтов.

Вал мотора должен быть соединен со шпилькой при помощи муфты гибкого типа. Все оси необходимо прикреплять к основаниям, выполненным из ДСП. В конструкциях такого типа фрезер перемещается исключительно в вертикальной плоскости, при этом сдвиг самой детали происходит по горизонтали.

Электронные компоненты будущих станков

Это является одним из самых важных этапов конструирования. Электроника самодельных машин является ключевым элементом управления всеми двигателями и самим процессом.

Работы, которые будут выполняться будущим станком и процессы, возникающие во фрезерном и сверлильном механизмах – очень разнообразны и точны, поэтому нам понадобиться надежный контроллер и драйвер.

Самодельная машина может функционировать на отечественных К155ТМ7, их нам понадобиться 3 штуки.

К каждому драйверу идут проводки от своей микросхемы (контроллеры независимы).

Шаговые двигатели в самодельном аппарате должны быть рассчитаны на напряжение, не превышающее 30-35 В. Часто случалось так, что при повышенной мощности, советские микросхемы-контроллеры перегорали.

Блок питания идеально подходит от сканера. Его нужно подсоединить к блоку к кнопке включения, контроллером и сами устройством (фрезер, дрель, выжигатель и так далее).

Главная плата управления (материнская плата для станка ЧПУ своими руками) должна быть подключена к персональному компьютеру или ноутбуку. Именно при помощи компьютера станок сможет получать четкие задания и превращать их в трехосевые движения, создавая конечные продукты. Идеальным будет программа Math3, которая позволяет создавать эскизы. Также отлично подойдут профессиональные программы для векторной графики.

Конечно, все зависит от вашей фантазии и прочности (грузоподъемности) корпуса и рамы. Однако, чаще всего ваш аппарат сможет разрезать фанеру толщиной менее 1,5 см, трехмиллиметровый текстолит или пластик.

ЧПУ станок очень удобно использовать в домашней радиолюбительской мастерской для изготовления печатных плат как макетов изделий, так и малых партий изделий. Наличие гравировально - фрезерного ЧПУ в домашней мастерской или малом предприятии позволяет как сократить время необходимое на изготовление печатной платы при изготовлении макетов, прототипов малых партий продукции, так и повысить качество изготавливаемых печатных плат по сравнению с другими способами изготовления. Использование станка с числовым программным управлением позволяет выполнять полный спектр операций по изготовлению печатной платы - фрезеровку проводящего рисунка (дорожек), сверление отверстий как для установки компонентов так и для межслойных переходов, обрезки и платы по контуру.

Для начала необходимо создать проект печатной платы. Для этого очень удобно использовать очень популярную в среде радиолюбителей программу Sprint Layout 6. При разработке нужно учитывать технологические особенности обработки фольгированного текстолита на станке с чпу, то есть производить трассировку достаточно широкими дорожками, оставляя необходимые зазоры для прохождения гравера/фрезы и т.д. Точкой начала отсчета координат необходимо выбрать ЛЕВЫЙ НИЖНИЙ УГОЛ, рисунок 1.

На слое О рисуем контур (границы) печатной платы по которым будет производиться обрезка готовой платы. Толщину линий указываем в зависимости от диаметра используемой для обрезки платы фрезы. Контролируем, зазор между краем платы и дорожками, чтобы контур не пересекалися с дорожками. Для того, чтобы плата после вырезки по не была выброшена из заготовки и не повредилась фрезой, оставляем перемычки, на которых плата будет держаться в заготовке. Их легко можно будет потом перекусить бокорезами при извлечении готовой платы. Выключаем лишние слои и предварительно осматриваем плату, рисунок 2.

рисунок 2

Открываем окно настройки «стратегий» фрезеровки, рисуноки 3 и 4.

рисунок 3

рисунок 4

В оконе «ширина дорожки» (рисунок 4) указываем толщину нашего режущего инструмента. Например гравер с режущим кончиком 0,6мм. Для удобства дальнейшей обработки ставим галочку «наметить отверстия». Нажимаем «Ок». Сохраняем в удобном для нас месте рисунок 5.

рисунок 5

После вычисления траектории обработки плата будет выглядеть следующим образом, рисунок 6:

рисунок 6

Наглядно можно отследить путь прохождения фрезы и количество меди, которое она снимет. Для удобства отображения траектории движения фрезы тонкой линией можно нажать выделенную кнопку, рисунок 7:

рисунок 7

На данном этапе необходимо внимательно отследить траекторию движения фрезы - проконтролировать отсутствие замыкания между проводящими дорожеками не принадлежащими к одоимённой цепи. При выявлении ошибки - исправить и пересохранить файл.
Далее необходимо подготовить управляющую программу, для станка. С помощью утилиты Step Cam 1.79 (скачать можно в интернете) открываем наш файл фрезеровки, производим настройку рабочей подачи и глубины резания (зависит от использумого станка, инструмента и материала) и конвертируем в G-code, нажав клавишу Make G-code. Программа на основе файла фрезеровки сгенерирует G-код обработки. Увидеть результат генерации G-кода можно с помощью вкладки Action -> Draw G-code. Если ничего не отобразится - нужно кликнуть мышью в окошке, рисунок 8.
Опытным путем подбиаем глубину фрезеровки, стараясь настроить станок так, чтобы фреза/гравер снимал только слой меди, с небольшим перерезанием. Данный параметр зависит от толщины медной фольги фольги используемого текстолита.

рисунок 8

Нажимаем Save G-code. Файл готов.
Загружаем файл в Mach3,проводим визуальный контроль загруженного файла. Выставляем нули на станке, запускаем обработку.
Для сверлнения отверстий в плате и вырезания по контуру настройка и подготовка файлов аналогична. Примерные настройки указаны на рисунках 9 и 10.
Сверление рисунок 9:

рисунок 9

Фрезеровка платы по контуру, рисунок 10:

рисунок 10

Сохраняем настройки для сверления и фрезеровки контура отдельно. Загружаем в Step Cam. Указываем глубину обработки, в зависимости от толщины используемого текстолита, с небольшим перерезанием. К примеру при толщине текстолита 1,5 мм выставляем для сверления 1,6-1,7 мм. Фрезеровку по контуру желательно выполнять в 2 - 4 прохода, в зависимоти от характеристик режущего инструмента. Для этого задаем в Step Cam глубину погружения при фрезеровке 0,5 мм, а затем после каждого прохода на станке вручную опускаем по оси «Z» инструмент и обнуляем.

Некоторые нюансы работы на станке при изготовлении печатной платы:
1. Поверхность рабочего стола должна быть максимально плоской и ровной. Один из вариантов добиться этого - сделать «жертвенный стол» из фанеры и отторцевать его. Для этого к основному рабочему столу станка крепится лист фанеры, а затем с помощью крупной фрезы фрезеруется «ложе» под плату на небольшую глубину (1-2мм).
2. Стеклотекстолит не всегда идеально ровный материал, и толщина его тоже может варьироваться. Поэтому резать необходимо с небольшим перерезанием. Некоторые опытные люди специально составляют карты высот, для более точной обработки. Степень перерезания определяется опытным путем.
3. Для фрезеровки можно использовать гравер типа «пирамидка» с кончиком от 0,4 до 1мм. Для сверления существуют сверла на 0,8-1,5мм с хвостовиком под стандартную цангу 3,175мм. Вырезать по контуру лучше всего фрезой «кукуруза» 2-3мм.
4. Инструмент каждый раз меняется вручную. Для этого после выполнения, например фрезеровки дорожек, останавливаем шпиндель, станок оставляем в режиме удержания. Поднимаем режущий инструмент на удобную для замены высоту, меняем. После этого производим выставление нуля по оси «Z». И так при каждой смене инструмента. Координаты X и Y не обнуляем.
5. Не забываем, что стеклотекстолит не самый полезный материал для организма. Особенно вредна пыль текстолита для дыхательных путей. Поэтому желательно организовать вытяжку или иным другим способом удалять лишнюю пыль из области резки. Можно например периодически смачивать печатную плату водой или друой подходящей жидкостью, с помощью медицинского шприца. Неплохо с задачей защиты дыхательных путей справится влажная повязка на нос/рот или респиратор.

Статья носит ознакомительный характер, основана на личном опыте автора и не является единственно верным и возможным решением.