Курсовая работа по химии Тема: «Получение индикаторов из природных источников. Исследование их свойств (pH перехода, устойчивость). Природные индикаторы Исследовательская работа по химии приготовление природные индикаторы

Курсовая работа по химии
Тема: «Получение индикаторов из природных источников. Исследование их свойств (pH перехода, устойчивость).»

Школа имени Колмогорова СУНЦ МГУ.

Москва 2012

Данная работа предназначена для учащихся специализированных классов средних образовательных учреждений, а также для школьников, интересующихся химией и биологией.

Цель работы: Приготовление растворов растительных индикаторов из природного сырья, изучение их свойств и определение с их помощью pH раствора.

Для достижения поставленной цели необходимо решить следующие задачи:

Рассмотреть классификацию индикаторов, их свойства

Изготовить индикаторы из соответствующего природного сырья.

Провести исследование и определить эффективность определения кислотности среды.

Введение:

Индикаторы (от лат. Indicator –указатель) – соединение, позволяющее визуализировать изменение концентрации какого-либо вещества или компонента. Чтобы какое-либо вещество могло служить индикатором, оно должно удовлетворять следующим необходимым условиям: должно быть слабой кислотой или слабым основанием; его молекулы и ионы должны иметь разную окраску; окраска их должна быть чрезвычайно интенсивной, чтобы быть заметной при добавке к испытуемому раствору малого количества индикатора. Проблема получения индикаторов достаточно актуальна, так как природные индикаторы играют большую роль и широко используются при химических исследованиях. Индикаторы широко используют в титровании в аналитической химии и биохимии . Их преимуществом является дешевизна, быстрота и наглядность исследования.

Самый часто используемый и известный в химии растительный кислотно-основной индикатор – лакмус. Он был известен уже в Древнем Египте и в Древнем Риме, где его использовали в качестве фиолетовой краски - заменителя дорогостоящего пурпура.

Позже лакмус был открыт в 1663 году. Он представлял собой водный раствор лишайника, растущего на скалах в Шотландии. Роберт Бойль приготовил водный раствор лакмусового лишайника для своих опытов. Склянка, в которой он хранил настой, понадобилась для соляной кислоты. Вылив настой, Бойль наполнил склянку кислотой и с удивлением обнаружил, что кислота покраснела. Заинтересовавшись этим явлением, Бойль на пробу добавил несколько капель к водному раствору гидроксида натрия и обнаружил, что в щелочной среде лакмус синеет. Так был открыт первый индикатор для обнаружения кислот и щелочей, названный по имени лишайника лакмусом. С тех пор этот индикатор является одним из незаменимых индикаторов в различных исследованиях в области химии.

Часть 1 – литературный обзор.

План литературного обзора:

1. Виды индикаторов

2. Причина изменения окраски индикаторов

3. Природные индикаторы и их свойства

4. Способы приготовление индикаторов из природного сырья

1. Виды химических индикаторов.

Существуют следующие виды химических индикаторов:

· Кислотно-основные.

· Универсальные

· Комплексонометрические

· Адсорбционные

· Флуоресцентные

· Хемилюминесцентные

Кислотно-основные – это органические соединения, способные изменять цвет в растворе при изменении кислотности. Такие индикаторы резко изменяют свой цвет в достаточно узких границах рН.

Универсальные индикаторы – это смесь нескольких индивидуальных индикаторов, подобранных так, что их раствор поочередно меняет окраску, проходя все цвета.

Комплексонометрические индикаторы – вещества, образующие с ионами металлов, окрашенные комплексные соединения.

Адсорбционные индикаторы – индикаторы, когда некоторые вещества адсорбируются на поверхности осадка, изменяя его окраску.

Флуоресцентные индикаторы – такие индикаторы светятся (флуоресцируют) разным цветом в зависимости от рН раствора. Они удобны при исследовании мутных или окрашенных растворов, в которых практически невозможно заметить изменение окраски обычными кислотно-основными индикаторами.

Хемилюминесцентные индикаторы - вещества, способные в точке эквивалентности светиться видимым светом и используемые при титровании сильно окрашенных растворов.

2. Причина изменения цвета индикаторов в том, что присоединение или отдача протонов его молекулами связаны с заменой одних хромофорных групп другими или с появлением новых хромофорных групп.

Хромофо́ры - ненасыщенные группы атомов, обуславливающие цвет химического соединения. К хромофорам относят азогруппу -N=N-, нитрогруппу -NO2, нитрозогруппу -N=O, карбонильную группу =С=О, сопряженные системы двойных связей, хиноидные группировки и др.

Введение других групп, называемых ауксохромами (-ОН, -NH2 и др.), способствует углублению окраски.

Если индикатор - слабая кислота HIn, то в водном растворе имеет место равновесие: HIn + Н2О/In - + Н3О+. Если индикатор - слабое основание In, то: In + H2O/HIn+ + ОН-. В общем виде можно записать: Ina + Н2О/Inb + Н3О+, где Ina и Inb - соотв. кислая и основная формы индикатора, которые окрашены различно. Константа равновесия этого процесса КIn = / называется константой индикатора. Цвет раствора зависит от соотношения /, которое определяется рН раствора. Считают, что цвет одной формы индикатора заметен, если ее концентрация в 10 раз превышает концентрацию другой формы, то есть если отношение / = /KIn равно <0,1 или >10. Изменение наиболее отчетливо, когда = и КIn = [Н3О]+, т. е. при рН = рКIn. К сожалению, природные индикаторы не имеют интервала перехода из-за своего сложного состава. Интервалы перехода некоторых известных синтетических индикаторов смотри ниже (рис. 1).

Рис. 1. Изменение цвета синтетических индикаторов в зависимости от pH.

3. Кислотно-основные индикаторы можно найти среди природных объектов. Пигменты многих растений способны менять цвет в зависимости от кислотности клеточного сока. Следствие, пигменты являются индикаторами, которые можно применить для исследования кислотности других растворов. Общее название таких растительных пигментов флавоноиды. Флавоноиды (от лат. flavus - желтый) – группа природных биологически активных соединений – производных бензо-гамма-пирона, в основе которых лежит фенилпропановый скелет. Это гетероциклические соединения с атомом кислорода в кольце.

Кольцо А синтезируется из трёх активированных молекул малоновой кислоты.

Кольцо В (см. рис.2) и примыкающий к нему трёхуглеродный фрагмент (атомы С-2, С-3 и С-4 и О, образующие кольцо С) синтезируются из шикимовой кислоты и фосфоенолпировиноградной кислоты с промежуточным образованием через фенилаланин-коричную кислоту.

Рис. 2. Общая структура флавонов (имена ароматических колец: А - С - В).

Производными этих веществ являются катехины, бетацианины, антоцианы и антоцианидины. Антоцианы – общее название флавоноидного пигмента. Они состоят из углевода (сахара) и агликона – неуглеводной составляющей, в качестве которого у антоцианов выступают антоцианидины – 2-фенилхромены, кроме того, во многих случаях они имеют ацильную группу (рис. 3).

Рис. 3. Структурные формулы антоциана и антоцианидина.

Наиболее распространенными являются цианидин, дельфинидин, пеонидин (таблица 1).

Антоцианидин

Аурантинидин

Цианидин

Дельфинидин

Европинидин

Лютеолинидин

Пеларгонидин

Мальвидин

Пеонидин

Петунидин

Розинидин

Таблица 1. Типичные представители антоцианов.

Цвет антоцианидинов является рН зависимым. Антоцианидиновая система претерпевает различные молекулярные преобразования, связанные с изменением рН. В водных растворах существует пять молекулярных видов химического равновесия антоцианидинов: красная пирилиевая соль, бесцветное псевдооснование, синяя хиноидная форма, пурпурный фенолят хиноидной формы, жёлтый халкон (рис. 4).

Рис. 4. Пять молекулярных видов химического равновесия антоцианидинов.

На кислых рН = 1-3, антоцианидин существует преимущественно в виде красной пирилиевой соли. Увеличение рН приводит к снижению интенсивности цвета, так как первая форма подвергается гидратации, вследствие которой получается бесцветная. Из-за нуклеофильной атаки воды на 2-положение антоцианидинового скелета и быстрой потери протона у флавилиевых катионов равновесие смещается в сторону синей хиноидной формы при рН <7 и к пурпурному феноляту хиноидной формы при рН <8. При дальнейшем увеличении рН получается светло-желтый халкон. Данное превращение происходит за счет открытия центрального кольца. Цвет щелочным растворам могут быть возвращены путем изменения рН к кислой. Антоцианидиновая форма равновесия переход к равновесию, где концентрация красных ионов флавилиевого катиона преобладает. Однако, если значение рН слишком высоко и неустойчивая ионная форма халкона уже сформирована, восстановление в форму красной пирилиевой соли не может быть достигнуто путем простого повторного подкисления. В этом случае халкон преобразуется в дикетон за счет кето-енольной таутомерии (рис. 5).

Рис. 5. Общая схема преобразования халкона.

Хорошо известно, что некоторые металлы, такие как Fe 3 + и Al 3 + образуют стабильные глубоконасыщенные цветные координационные комплексы с антоцианами, которые несут дигидроксифенил структуры в орто-положении B-кольца (рис.6). Это приводит к батохромным сдвигам в их спектрах поглощения. Комплексы тоже являются pH зависимыми. Они принимают участи как в образовании цветных, так и бесцветной формы. Таким образом, различные факторы, включая концентрацию и природу антоцианидинового, антоцианидинового равновесия формы, степени гликозилирования антоцианов, ацилирование, природа и концентрация пигментов, металлические комплексы, внутри - и межмолекулярных механизмы ассоциации – влияют на изменение цвета и его насыщенность.


Рис.6. Пример комплекса, образованного металлами и антоцианами.

Главная роль антоцианов в образовании цвета в цветках растений – привлечение опылителей. В плодах же – для привлечения внимания животных, которые могут съесть их и тем самым помочь в распространении семян. В фотосинтетических тканях (таких как листья) антоцианы имеют "солнцезащитную" функцию, поглощая сине-зеленый и ультрафиолетовый свет, защищая ткани от фотоингибирования. В клетке антоцианы расположены в вакуолях. Увеличение вакуолярной рН в лепестках цветов связано с активным транспортом Na+ и/или K+ из цитозоля в мембрану вакуоли через натрий-калиевый канал. Эта систематическая транспортировка ионов поддерживает слабощелочную рН вакуоли, производя небесно-голубые лепестки.

Катехины – полифенольные соединения в составе чая. Типичные представители – танины. Также меняют свою окраску в зависимости от различных значений pH. В кислой среде они светлеют, в щелочной – темнеют.

Близкие по окраске к антоцианам пигменты бетацианины (betterave – свекла (фр.)) никогда не встречаются вместе с антоцианами в одних и тех же растениях. Структура бетацианинов долгое время не поддавалась расшифровке и была одной из самых загадочных тайн биохимии растений. Несмотря на сходство в окраске, хромофорный фрагмент бетацианинов совершенно не похож на хромофор антоцианов, хотя тоже имеет положительный заряд. Бетацианины очень хорошо растворимы в воде и более устойчивы, чем антоцианы. Наиболее известный источник бетацианинов – обычная столовая свекла.

4. Антоцианы содержатся в вакуолях клеток растений, где поддерживается постоянный pH. Для того чтобы получить индикатор требуется извлечь их из клетки. Существует несколько способов сделать это: с помощью механического воздействия (разрезать), с помощью теплового шока (отварить), с помощью экстрагирования (лучше всего использовать полярный растворитель).

В качестве сырья лучше всего использовать лепестки или зрелые плоды. В то же время можно использовать заготовленные на зиму варенья, компоты, которые сохраняют окраску раствора, например, черную смородину, малину. Некоторые сорта чая тоже являются индикаторами. Неплохо подходят различные соки (желательно свежеприготовленные), например, из винограда (Конкорда или мускатного) или вишни .

К сожалению, из-за неустойчивости антоцианов, отвары быстро плесневеют и скисают, поэтому готовить такие индикаторы надо непосредственно перед работой с ними. Ниже приведены несколько методик для получения подобных растворов.

1)Взять немного запасенного сырья (точное количество не имеет значения), положить в пробирку, налить воды, поставить на водяную баню и нагревать до тех пор, пока раствор не окрасится. Каждый раствор после охлаждения необходимо профильтровать и слить в приготовленную заранее чистую склянку с этикеткой.

2)Взять немного запасенного сырья (в данном случае лепестков), растолочь их в ступке и экстрагировать в этиловом спирте или уайт-спирите. Полученный раствор профильтровать и слить в заранее подготовленную чистую подписанную пробирку.

Так же можно изготовить индикаторную бумагу, пропитав полоски фильтровальной бумаги растворами полученных экстрактов (универсальным индикатором). Для более точного определения полученный при нанесении капли раствора цвет индикаторной бумаги необходимо немедленно сравнить с эталонной цветовой шкалой.

Кроме того для использования индикаторов из природного сырья нужно знать, что некоторые индикаторы можно использовать только один раз, так как после первого же изменения разрушаются и перестают реагировать (цветки кипрея), а другие – многократно (к примеру, экстракт цветов колокольчика).

5.Выводы из литературного обзора.

Индикаторы играют важную роль в химии и биологии, их используют при титровании.

Существует огромное количество видов индикаторов, каждый используется в разных условиях.

Каждый индикатор обладает своими свойствами, для их использования нужно это учитывать.

Природные индикаторы можно использовать на уроках химии, элективных курсах.

Результаты исследовательской работы можно использовать в садоводстве, например, для выращивания цветов с более насыщенной окраской.

Результаты исследовательской работы можно использовать для определения рН (водородный показатель) различных растворов, например, молочных продуктов, бульонов , лимонада и других, а также для определения кислотности почвы, так как на одной и той же почве в зависимости от ее кислотности один вид растений может давать высокий урожай, а другие будут угнетенными.

Часть 2 – Практическая часть.

Цель экспериментальной части – извлечь антоциановые пигменты из растительного сырья, определить эффективность антоцианов и их комплексных солей в качестве кислотно-основных индикаторов.

Экспериментальная часть.

Сырьем для извлечения антоцианового красителя служили измельченные ягоды черники, плод свеклы, краснокочанной капусты, морковный и вишневый сок, варенье из клюквы, листья черного чая, соцветия каркаде. В качестве экстрагентов применяли дистиллированную воду, а также бутанол-1.

Навеску сырья массой 10 г погружали в экстрагент объемом 120 см3 . Полученные экстракты фильтровали с помощью фильтровальной бумаги и полученный фильтрат наливали в заранее подготовленную колбу.

Определение эффективности индикатора – аналитическая реакция, которую необходимо проводить при строго определенном значении pH, которое должно сохраняться всего процесса проведения реакции. Для сохранения постоянного значения pH были применены буферные растворы. Нами был использован универсальный буферный раствор (т. е. буферный раствор, обладающий большой буферной емкостью) из H3PO4, CH3COOH, H3BO3, молярность 0,04 моль/л, концентрация кислот 100%. Данный раствор имеет буферную емкость от pH = 2 до pH = 12. [Лурье]

Расчеты для буферных растворов:

При расчете на 0,1 л буферного раствора имеем:

m (H3PO4) = 0,04 моль/л * 0,1л * 98 г/моль = 0,392 г
m (CH3COOH) = 0,04 моль/л * 0,1л * 60 г/моль = 0,240 г
m (H3BO3) = 0,04 моль/л * 0,1л * 62 г/моль = 0,248 г

В качестве титранта использовался NaOH молярностью 0,2 моль/л.

m (NaOH) = 0,2 моль/л * 0,1 л * 40 г/моль = 0,8 г.

Для приготовления буферных растворов мы использовали смесь кислот. С помощью весов отмерили необходимую, согласно расчетам, массу кислот, смешали их в мерном стакане с 0,1 л дистиллированной воды. К полученному раствору добавили необходимое количество NaOH (см. таблицу 2). Затем взяли аликвоту (10 мл) полученного буферного раствора. Последние 2 операции повторяли еще 10 раз для буферных растворов с различным pH.

Приготовление буферных растворов:

V смеси кислот (первоначального буфера), мл

V NaOH, мл

V полученного буфера, мл

Таблица 2. Расчетная таблица для приготовления буферных растворов.

1.Черника.

Образец ягод черники экстрагировали водой (температура 25 градусов Цельсия) в течение 10 мин. Добавили в пробирки по 0,5 мл буферного раствора и 0,8 мл полученного экстракта. Наблюдали изменение цвета (рис. 7).

Рис. 7. Изменение окраски экстракта черники в зависимости от различных значений pH.

2.Каркаде (гибискус).

Образец соцветий гибискуса экстрагировали водой (температура 85 градусов Цельсия) в течение 5 мин. Добавили в пробирки по 0,5 мл буферного раствора и 0,8 мл полученного экстракта. Наблюдали изменение цвета (рис. 8).

Рис. 8. Изменение окраски экстракта гибискуса в зависимости от различных значений pH.

3. Свекла.

Плод свеклы порезали на кусочки и экстрагировали водой (температура 25 градусов Цельсия) в течение 20 мин. Добавили в пробирки по 0,5 мл буфера и 0,8 мл полученного раствора. Наблюдали изменение цвета (рис. 9).

Рис. 9. Изменение окраски экстракта свеклы в зависимости от различных значений pH.

4. Чай черный.

Образец листьев черного чая экстрагировали водой (температура 85 градусов Цельсия) в течение 5 мин. Добавили в пробирки по 0,5 мл буферного раствора и 0,8 мл полученного экстракта. Наблюдали изменение оттенка исходного цвета (рис. 10).

Рис. 10. Изменение окраски экстракта чая в зависимости от различных значений pH.

5. Сок вишневый.

Сок разбавили дистиллированной водой в 10 раз. Добавили в пробирки по 0,5 мл буфера и 0,8 мл полученного раствора. Наблюдали изменение цвета (рис. 11).

Рис. 11. Изменение окраски экстракта вишни в зависимости от различных значений pH.

6. Сок морковный.

Сок разбавили дистиллированной водой в 10 раз. Добавили в пробирки по 0,5 мл буфера и 0,8 мл полученного раствора. Изменения окраски не наблюдали (рис. 12).

Рис. 12. Окраска экстракта моркови при различных значениях pH.

7. Клюквенное варенье.

Рис. 13. Изменение окраски экстракта клюквы в зависимости от различных значений pH.

8. Краснокочанная капуста.

Образец листьев краснокочанной капусты мелко порезали и экстрагировали спиртовым раствором. Добавили в пробирки по 0,5 мл буфера и 0,8 мл полученного раствора. Наблюдали изменение цвета (рис. 14).

Рис.14. Изменение окраски экстракта краснокочанной капусты в зависимости от различных значений pH.

9. Комплексный индикатор с ионами Al3+.

Приготовили растворы с ионами Al3+. Объем раствора 0,01 л. Молярность растворов равна 0,1 моль/л, 0,01 моль/л, 0,001 моль/л и 0,0001 моль/л.

Расчеты для приготовления раствора.

В пересчете на имеющийся у нас AlCl3*6H2O

m (AlCl3) = (131,5 + 6 * 18) г/моль * 0,015л * 0,1 моль/л = 0,36 г

Кристаллогидрат массой 0,36 г растворили в 0,015 л дистиллированной воды. Получили раствор молярностью 0,1 моль/л. Растворы с меньшей молярностью получали последовательным разведением (брали 10 мл раствора с большей молярностью и разбавляли его 90 мл дистиллированной воды). Добавляли полученные растворы к экстракту из краснокочанной капусты, поскольку тот показал наилучшие результаты в качестве индикатора. Проверяли действие полученных растворов на буферах с pH = 7 (нейтральная среда), pH = 3 (кислая среда), pH = 9 (щелочная среда). Наблюдали изменение окраски, отличное от остальных (рис. 15).

Рис. 15. Изменение окраски экстракта краснокочанной капусты в зависимости от различных значений pH и концентрации ионов алюминия .

12. Комплексный индикатор с ионами Fe3+.

Приготовили растворы с ионами Fe3+. Объем раствора 0,01 л. Молярность растворов равна 0,1 моль/л, 0,01 моль/л, 0,001 моль/л и 0,0001 моль/л.

Расчеты для приготовления раствора

В пересчете на имеющийся у нас FeCl3*6H2O

m (FeCl3) = (162,5 + 6 * 18) г/моль * 0,015л * 0,1 моль/л = 0,4057 г

Кристаллогидрат массой 0,4057 г растворили в 0,015 л дистиллированной воды. Получили раствор молярностью 0,1 моль/л. Растворы с меньшей молярностью получали последовательным разведением (брали 10 мл раствора с большей молярностью и разбавляли его 90 мл дистиллированной воды). Добавляли полученные растворы к экстракту из краснокочанной капусты. Проверяли эффективность полученных растворов в буферных растворах с показателем кислотности 3, 7, 9. Наблюдали изменение окраски, отличное от остальных (рис. 16).

Рис. 16. Изменение окраски экстракта из краснокочанной капусты в зависимости от различных значений pH и концентрации ионов железа.

Обсуждение экспериментальной части.

В результате проведения данных аналитических реакций мы наблюдали изменение окраски экстрактов в зависимости от различных pH. Тем самым мы доказали то, что возможно их применение в качестве кислотно-основных индикаторов. Главными отличиями от синтетических индикаторов является то, что они не имеют четких границ перехода, цвет меняется постепенно, проходя через промежуточные фазы. Наибольшую эффективность показал экстракт из краснокочанной капусты. Экстракты из свежего сырья показали большую эффективность вследствие того, что полученные из него пигменты не подвергались никакой дополнительной обработке, кроме того в подобном сырье их гораздо больше, так как антоцианы являются неустойчивыми соединениями и со временем разрушаются. По этой же причине приготавливать подобные индикаторы нужно непосредственно перед работой с ними.

Комплексные образования с ионами металлов. Растворы с ионами металлов имели свою кислотность, например, раствор с молярностью 0,1 моль/л имел pH равный 4, а 0,0001 моль/л – pH равный 6. Таким образом, мы можем предположить, что изменение окраски отличное от изменения окраски экстракта частично вызвано незначительным изменением pH. Кроме этого – антоцианы являются флавоноидами, а они в свою очередь – производными фенолов. Общеизвестный факт, что качественной реакцией на фенолы является их взаимодействие с раствором FeCl3, при этом образуются интенсивно окрашенные комплексные соединения. Аналогичная реакция протекает у флавоноидов и с AlCl3 . Тем самым, мы можем уверенно утверждать, что на изменение окраски влияет не только pH, но и количество ионов железа и алюминия в растворе, следовательно, полученные экстракты можно использовать для определения количества данных металлов в растворах.

Выводы из экспериментальной части:

1. Антоцианы можно использовать в качестве кислотно-основных индикаторов, а также для определения количества ионов железа и алюминия в растворах.
2. Наибольшую эффективность и показательность имеет экстракт из краснокочанной капусты, а также комплексные соли присутствующего в растворе антоциана с металлами. 3. Полученные индикаторы не имеют четкой границы перехода вследствие своего сложного состава. Вследствие неустойчивости антоцианов готовить их нужно непосредственно перед началом работы.
4. Лучше всего изготавливать подобные кислотные индикаторы непосредственно из растительного сырья. Можно применять фруктовые соки, варенья, но эффективность индикаторов из подобного сырья ниже.

Список литературы:

1. FLAVONOIDS: Chemistry, Biochemistry and Applications. Øyvind M. Andersen Kenneth R. Markham, CRC Press, 2006, p. 471 – 553.

2. Anthocyanins as pH-Indicators and Complexing Agents. Peter Keusch. www. demochem. de/p26_anth-e. htm

3. Harborn J. B. The flavonoids: recent advances // Plant pigments / Ed. T. W. Goodwin. London: Academic Press, 1988. p.

4. http://ru. wikipedia. org/wiki/Антоцианы

5. . Химия без формул или знакомые незнакомцы. Авалон, Азбука-классика, СПб.-2005.

6. , . Книга по химии для домашнего чтения. М. Химия.-1995.

7. . Справочник по аналитической химии. М. Химия

Красный, или батохромный, сдвиг – сдвиг полосы в сторону длинных волн.

«Школа – интернат для детей с нарушением зрения»

В МИРЕ

ИНДИКАТОРов

ВВЕДЕНИЕ

ИСТОРИЯ ОТКРЫТИЯ ИНДИКАТОРОВ

4 - 5

ХИМИЧЕСКИЕ ИНДИКАТОРЫ

6 - 8

III.

ПРИРОДНЫЕ ИНДИКАТОРЫ

9 - 10

ПРИМЕНЕНИЕ ИНДИКАТОРОВ

Биохимическая роль индикаторов и применение в медицине

Применение природных индикаторов в народном хозяйстве

Применение индикаторов в быту

1 4 - 18

Приготовление природных индикаторов из растительного сырья

Определение среды некоторых средств бытовой химии с помощью полученного индикатора

Определение среды растворов некоторых

кисломолочных продуктов

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

ВВЕДЕНИЕ

Индикаторы широко используют в химии, в том числе и в школе. Любой школьник, скажет, что такое фенолфталеин, лакмус или метилоранж. При знакомстве с кислотами и основаниями я узнал, что при добавлении того или иного индикатора в кислотную или щелочную среду, растворы меняют свою окраску. Поэтому индикаторы используются для определения реакции среды (кислая, щелочная или нейтральная). Ещё нам рассказали, что соки ярко окрашенных ягод, плодов и цветков обладают свойствами кислотно-основных индикаторов, т. к. тоже изменяют свою окраску при изменении кислотности среды.

Меня заинтересовал вопрос: какие растения могут использоваться в качестве индикаторов? Можно ли приготовить растворы растительных индикаторов самостоятельно? Пригодны ли самодельные индикаторы для использования в домашних условиях, например, для определения среды продуктов питания или средств бытовой химии с целью выявления их негативного влияния на кожу рук? Думаю, актуальность темы заключается в том, что свойства растительных объектов могут быть использованы для применения в разных областях науки, например, таких как химия.

Гипотеза: растворы растительных индикаторов можно приготовить самостоятельно и применять в домашних условиях для определения среды некоторых напитков и растворов моющих средств.

Цель работы : Изучить действие химических и природных индикаторов в различных средах.

Задачи:

Изучить литературные источники по теме;

Рассмотреть классификацию индикаторов;

Сделать определенные выводы по применению индикаторов в быту и природе;

Научиться выделять индикаторы из природного сырья;

Исследовать действие природных индикаторов в различных средах (определить среду растворов некоторых продуктов питания, ягодных соков и растворов моющих средств для посуды).

I . ИСТОРИЯ ОТКРЫТИЯ ИНДИКАТОРОВ

Впервые вещества, меняющие свой цвет в зависимости от среды, обнаружил в XVII веке английский химик и физик Роберт Бойль.Он провел тысячи опытов. Вот один из них.

В лаборатории горели свечи, в ретортах что-то кипело, когда некстати зашел садовник. Он принес корзину с фиалками. Бойль очень любил цветы, но предстояло начать опыт. Он взял несколько цветков, понюхал и положил их на стол. Опыт начался, открыли колбу, из нее повалил едкий пар. Когда же опыт кончился, Бойль случайно взглянул на цветы, они дымились. Чтобы спасти цветы, он опустил их в стакан с водой. И – что за чудеса - фиалки, их темно-фиолетовые лепестки, стали красными. Случайный опыт? Случайная находка? Роберт Бойль не был бы настоящим ученым, если бы прошел мимо такого случая. Ученый велел готовить помощнику растворы, которые потом переливали в стаканы и в каждый опустили по цветку. В некоторых стаканах цветы немедленно начали краснеть. Наконец, ученый понял, что цвет фиалок зависит от того, какие вещества содержатся в растворе. Затем Бойль заинтересовался, что покажут не фиалки, а другие растения.

Он приготовил для своих опытов водный настой лакмусового лишайника. Склянка, в которой он хранил настой, понадобилась для соляной кислоты. Вылив настой, Бойль наполнил склянку кислотой и с удивлением обнаружил, что кислота покраснела. Заинтересовавшись этим, Бойль на пробу добавил несколько капель настоя лакмуса к водному раствору гидроксида натрия и обнаружил, что в щелочной среде лакмус синеет.

Эксперименты следовали один за другим, проверялись васильки и другие растения, но всё же лучшие результаты дали опыты с лакмусовым лишайником. Так, в 1663 году, был открыт первый индикатор для обнаружения кислот и оснований, названный по имени лишайника лакмусом.

В 1667 году Роберт Бойль предложил пропитывать фильтровальную бумагу отваром тропического лишайника – лакмуса, а также отварами фиалок и васильков.Высушенные и нарезанные «хитрые» бумажки Роберт Бойль назвал индикаторами, что в переводе с латинского означает «указатель», так как они указывают на среду раствора.

Именно индикаторы помогли ученому открыть новую кислоту - фосфорную, которую он получил при сжигании фосфора и растворении образовавшегося белого продукта в воде.

Лакмус стал самым древним кислотно-основным индикатором. Надо сказать, что само красящее вещество лакмус был известен ещё в Древнем Египте и Древнем Риме. Его добывали из некоторых видов лишайников, произраставших на скалах Шотландии, и использовали в качестве фиолетовой краски, но со временем, рецепт его приготовления был утерян.

В 1640 году ботаники описали гелиотроп – душистое растение с темно-лиловыми цветками, из которого тоже было выделено красящее вещество. Этот краситель наряду с соком фиалоктоже стал широко применяться химиками в качестве индикатора, который в кислой среде был красным, а в щелочной – синим.

Позже, в серединеXIX века химики научились искусственно синтезировать кислотно–основные индикаторы. Так в 1871 годунемецкий химик-органик Адольф фон Байер, будущий лауреат Нобелевской премии, впервые осуществил синтез фенолфталеина.

В наши дни известны несколько сот кислотно-основных индикаторов, искусственно синтезированных.

II . ХИМИЧЕСКИЕ ИНДИКАТОРЫ

Слово «индикатор» применяется в разных областях человеческой деятельности – механике, математике, биологии, экологии, экономике, в социальных, общественных науках и прочих.

Индикатор (от лат инскогоindicator - указатель) - это прибор, устройство, информационная система, вещество или объект, отображающий изменения какого-либо параметра контролируемого процесса или состояния объекта в форме, наиболее удобной для непосредственного восприятия человеком визуально, акустически, тактильно или другим легко интерпретируемым способом. Мы будем рассматривать только химические индикаторы.

Химические индикаторы - это вещества, изменяющие окраску, люминесценцию или образующие осадок при изменении концентрации какого-либо компонента в растворе. Они бывают природного и химического происхождения. Индикаторы применяют чаще всего для установления конца какой-либо химической реакции или концентрации водородных ионов по легко заметному признаку.Химические индикаторы делят обычно на несколько групп.

В школе используются самые распространенные кислотно – основные индикаторы. Их преимуществом является дешевизна, быстрота и наглядность исследования. Это растворимые органические соединения, которые меняют свой цвет в зависимости от концентрации ионов водорода Н + (рН среды). Происходит это потому, что в кислой и щелочной среде молекулы индикаторов имеют разное строение. Примером может служить общеизвестный индикатор фенолфталеин. В кислой среде это соединение находится в виде недиссоциированных молекул и раствор бесцветен, а в щелочной среде – в виде ионов и раствор имеет малиновый цвет. Такие индикаторы резко изменяют свой цвет в достаточно узких границах рН.

Универсальные индикаторы – это смеси нескольких индивидуальных индикаторов, подобранных так, что их раствор поочередно меняет окраску, проходя все цвета радуги при изменении кислотности раствора в широком диапазоне рН.

pH - водородный показатель. Это понятие ввёл датский химик Сёренсен для точной числовой характеристики среды раствора и предложил математическое выражение для его определения:

рН = -lg .

Характер среды имеет большое значение в химических и биологических процессах. В зависимости от типа среды эти процессы могут протекать с различными скоростями и в разных направлениях. Поэтому во многих случаях важно как можно более точно определять среду раствора. При рН = 7 – среда нейтральная, при рН 7 – щелочная. Среду исследуемого раствора можно приблизительно определить по окраске индикаторов.

Больше всего распространены индикаторы лакмус, фенолфталеин и метилоранж.

Самым первым появился кислотно-основный индикатор лакмус . Фактически природный лакмус представляет собой сложную смесь.Это порошок черного цвета, растворим в воде, 95 % спирте, ацетоне, ледяной уксусной кислоте. Его основными компонентами являются: азолитмин (C 9 H 10 NO 5) и эритролитмин (С 13 H 22 O 6).

Окраска лакмуса в различных средах изменяется следующим образом:

Фенолфталеин С 20 Н 14 О 4 (продается в аптеке под названием "пурген") - белый мелкокристаллический порошок, растворим в 95% спирте, но практически не растворим в воде. Применяется в виде спиртового раствора, приобретает в щелочной среде малиновый цвет, а в нейтральной и кислой он бесцветен.

Метиловый оранжевый , C 14 H 14 N 3 O 3 SNa , - кристаллический порошок оранжевого цвета, умеренно растворим в воде, нерастворим в органических растворителях. Метилоранж действительно оранжевый в нейтральной среде. В кислотах его окраска становится розово-малиновой, а в щелочах – желтой.

В зависимости от кислотности среды изменяет окраску и краситель бриллиантовый зеленый (его спиртовой раствор используется как дезинфицирующее средство – зеленка). В сильнокислой среде его окраска желтая, а в сильнощелочной среде раствор обесцвечивается.

Помимо кислотно-основных известны и другие типы индикаторов:адсорбционные, комплексонометрические, флуоресцентные, изотопные, окислительно-восстановительные и прочие.

универсальной индикаторной бумагой. В основе - смеси индикаторов, позволяющие определить значение рН растворов в большом диапазоне концентраций (1-10; 0-12). Растворами таких смесей - «универсальных индикаторов» обычно пропитывают полоски «индикаторной бумаги», с помощью которых можно быстро (с точностью до десятых долей рН) определить кислотность исследуемых водных растворов. Для более точного определения полученный при нанесении капли раствора цвет индикаторной бумаги немедленно сравнивают с эталонной цветовой шкалой.

III . ПРИРОДНЫЕ ИНДИКАТОРЫ

Кислотно-основные индикаторы бывают не только химическими. Они находятся вокруг нас, только обычно мы об этом не задумываемся. Когда нет настоящих химических индикаторов, то для определения среды растворов можно успешно применять самодельные индикаторы из природного сырья.

Исходным сырьем могут служить цветы герани, лепестки пиона или мальвы, ирис, темные тюльпаны или анютины глазки, а также ягоды малины, черники, черноплодной рябины, соки вишни, смородины, винограда, плоды крушины и черемухи.

Эти природные индикаторы содержат окрашенные вещества (пигменты), способные менять свой цвет в ответ на то или иное воздействие. И, попадая в кислую или щелочную среду, они наглядным образом сигнализируют об этом.

Такими пигментами являются, прежде всего, антоцианы . Они имеют (преимущественно) красный цвет в кислой среде и синий или зеленый - в щелочной. Пример:

Раствор щелочи

Раствор кислоты

Именно антоцианы придают разнообразные оттенки розового, красного, голубого и лилового многим цветам, плодам и осенним листьям. Эта окраска часто зависит от рН клеточного содержимого, и потому может меняться при созревании плодов, отцветании цветков и увядании листьев.

Антоцианы - неустойчивые соединения, в клетках растений обычно содержится несколько различных антоцианов, и проявление их связано с химическим составом почвы и возрастом растения.

Обычный чай – тоже индикатор. Если в стакан с крепким чаем капнуть лимонный сок или растворить несколько кристалликов лимонной кислоты, то чай сразу станет светлее. Если же растворить в чае питьевую соду, раствор потемнеет (пить такой чай, конечно, не следует). Чай же из цветков каркаде дает намного более яркие цвета.

Индикатором являются и обычные чернила, которые под влиянием кислоты изменяют окраску с фиолетовой на зеленую, и вновь приобретают фиолетовую окраску при нейтрализации кислоты щелочью.

Сок столовой свеклы в кислой среде изменяет свой рубиновый цвет на ярко-красный, а в щелочной – на желтый. Зная свойство свекольного сока, можно сделать цвет борща ярким. Для этого к борщу следует добавить немного столового уксуса или лимонной кислоты.

Вот список растений, листья или плоды которых можно использовать для приготовления природных индикаторов.

    Виноград красный

    Вишня, сок ягод

    Герань розовая, лепестки

    Голубика, ягоды

    Гортензия

    Дельфиниум лепестки

    Земляника, ягоды

    Капуста красная, сок

    Карри порошок (куркума)

    Конский каштан, листья

    Луковая шелуха

    Мак, лепестки

    Маргаритки, лепестки

    Морковь, сок

    Петуния, лепестки

    Пион красный, лепестки

  • Редис красный

    Роза, лепестки

    Свёкла красная, сок

    Тимьян или орегано - цветки

    Тюльпан, лепестки

    Чёрная смородина сок

    Фиалка, лепестки

Находясь летом в отпуске, можно засушить лепестки цветов и ягоды, из которых по мере необходимости готовить растворы, и таким образом обеспечить себя индикаторами.

Соки или отвары ярко окрашенных плодов или других частей растений, используемые в качестве природных индикаторов необходимо хранить в темной посуде. К сожалению, у природных индикаторов есть серьезный недостаток: их отвары довольно быстро портятся – скисают или плесневеют. Поэтому в химических лабораториях используют синтетические индикаторы, резко изменяющие свой цвет в достаточно узких границах рН.

IV . ПРИМЕНЕНИЕ ИНДИКАТОРОВ

Индикаторы позволяют быстро и достаточно точно контролировать состав жидких сред, следить за изменением их состава или за протеканием химической реакции.

Как уже было сказано, в растениях очень много природных пигментов, природных индикаторов, большая часть которых относится к антоцианам.

Так как антоцианы обладают хорошими индикаторными свойствами, то их можно применять как индикаторы для идентификации кислотной, щелочной или нейтральной среды, как в химии, так и в быту. От кислотности среды зачастую зависит и поведение веществ, и характер реакции.

Природные индикаторы находят применение во многих областях человеческой деятельности: в медицине и экологии, в сельском и народном хозяйстве, в пищевой промышленности и в быту.

Так же антоцианы применяются в косметике, т.к. обладают стабилизирующим эффектом и являются коллагенами и в пищевой промышленности в виде добавки E163 в качестве природных красителей. Они применяются в производстве кондитерских изделий, напитков, йогуртов и других пищевых продуктов.

1. Биохимическая роль индикаторов и применение в медицине

Данные последних лет свидетельствуют, что красящие вещества растений выполняют огромную биохимическую роль, обладают многообразными лечебными эффектами и благотворно влияют на организм человека.

Антоцианы являются мощными антиоксидантами, которые сильнее в 50 раз витамина С. Многие исследования подтвердили пользу антоцианов для зрения. Наибольшая концентрация антоцианов содержится в чернике. Поэтому препараты, содержащие чернику, наиболее востребованы в медицине.

Образуя комплексы с радиоактивными элементами, которые губительно действуют на наш организм, антоцианы способствуют быстрому выведению их из организмов. Таким образом, антоцианы являются гарантами долгой и здоровой жизни клеток, а значит, продлевают и нашу жизнь. Они оказывают защитное действие на сосуды, уменьшая их ломкость, помогают снизить уровень сахара в крови.

Поступая в организм человека с фруктами и овощами, антоцианы проявляют действие, схожее с витамином Р, они поддерживают нормальное состояние кровяного давления и сосудов, предупреждая внутренние кровоизлияния. Антоцианы требуются клеткам головного мозга, улучшают память.

Антоцианы обладают уникальными свойствами – подавляют рост опухолей. Так, например недавние исследования показали, что употребление антоцианов в пищу помогает сократить риск заболевания раком пищевода и прямой кишки. Приготовленные из растений, содержащих антоцианы, водные и подкисленные настои в течение нескольких часов уничтожали бактерии дизентерии и брюшного тифа. Антоцианы помогают предотвратить развитие катаракты и в целом оказывают благоприятное воздействие на весь организм. Поэтому овощи и фрукты ярких цветов считаются полезными для организма.

2. Применение природных индикаторов в народном хозяйстве

Кроме медицины антоцианы также используются и в других областях народного хозяйства. Например, в сельском хозяйстве, для оценки химического состава почвы, степени её плодородия, при разведке полезных ископаемых. Добавив в антоциановый раствор горсть земли, можно сделать заключение о ее кислотности, т. к. на одной и той же почве в зависимости от ее кислотности один вид растений может давать высокий урожай, а другие будут угнетенными.

«Или взять хотя бы всем известный картофель. Он имеет различную окраску кожуры, глазков, проростков и мякоти. Различие окраски картофеля зависит от содержащихся в нем пигментов. Окрашенные клубни картофеля, как правило, богаче необходимыми для нашего организма веществами. Так, например, клубни с желтой мякотью имеют повышенное содержание жира, каротиноидов, рибофлавина и комплекса флавоноидов.».

«За счет способности антоцианов менять свою окраску можно наблюдать изменение цвета клубней картофеля в зависимости от применения минеральных удобрений и ядохимикатов. При внесении фосфорных удобрений картофель становиться белым, сульфат калия придаёт розовый цвет. Окраска клубней меняется под влиянием ядохимикатов, содержащих медь, железо, серу, фосфор и другие элементы. Такими свойствами обладают и другие растения содержащие природные индикаторы. Что позволяет оценить экологическую обстановку. При экологическом мониторинге загрязнений, использование растений содержащих природные индикаторы часто дает более ценную информацию, чем оценка загрязнения приборами. К тому же такой способ мониторинга состояния окружающей среды проще и экономичнее» (Н.Н.Третьяков. Учебник по агрономии).

3. Применение индикаторов в быту

Растительные индикаторы можно использовать и в быту.

    Индикаторы помогают определять среду растворов различных средств бытовой химии и косметических средств, удалять пятна растительного происхождения.

    Даже хозяйки используют индикаторы, чтобы борщ был ярко-красным - в него перед окончанием варки добавляют немного пищевой кислоты – уксусной или лимонной; цвет меняется прямо на глазах.

    Давненько было в моде писать приглашения на лепестках цветов; а писали их в зависимости от цветка и желаемого цвета надписи раствором кислоты или щелочи, пользуясь тонким пером или заостренной палочкой.

    Ещё в прошлом веке реакцию йода с крахмалом (в результате которой все окрашивается в синий цвет) использовали, чтобы уличить недобросовестных торговцев, которые добавляли в сметану «для густоты» пшеничную муку. Если на образец такой сметаны капнуть йодной настойки, синее окрашивание сразу выявит подвох.

    Раньше лакмус использовали в качестве красителя, но когда изобрели синтетические красители, использование лакмуса ограничилось. Для этой цели служат полоски фильтрованной бумаги, пропитанной раствором лакмуса.

V

1. Приготовление природных индикаторов

из растительного сырья

Задачи :

1. Получить природные индикаторы из доступных природных объектов.2. Составить шкалу изменения цвета для каждого индикатора.

Объект исследования:

Предмет исследования:

Методы исследования:

Из литературы я узнал, что приготовить вытяжку природных индикаторов можно разными способами – кипячением в воде или экстрагированием каким-либо растворителем, например – спиртом. Я приготовил индикаторы способом кипячения.

В качестве природных индикаторов были отобраны ягоды брусники, клюквы, черной смородины, свекла, морковь, куркума и черный чай.

брусника

черная смородина


куркума, черный чай

1. Изготовление индикаторов.

Для приготовления растительных индикаторов я взял по 50 г сырья, измельчил, залил 100 мл воды и прокипятил в течение 1-2 минут. Это приводит к разрушению мембран клеток, и антоцианы свободно выходят из клеток, окрашивая воду. Полученные отвары были охлаждены и профильтрованы. С целью предохранения от порчи, в полученный фильтрат добавил спирт в соотношении 2:1.

2. Изучение действия индикаторов в различных средах, составление таблицы изменения цвета.

Получив растворы индикаторов, я проверил, какую окраску они имеют в разных средах.

По несколько капель каждого образца добавлял в растворы соляной кислоты HCl (среда кислая) и гидроксида натрия NaOH (среда щелочная).

Вывод. Все индикаторы изменили свой цвет в кислой и в щелочной среде. Лучше себя показали индикаторы из свеклы, чёрной смородины, брусники и клюквы. Не все вещества обладают ярко выраженными индикаторными свойствами. Черный чай изменяет цвет только в кислоте, а морковь и куркума - только в щелочной. Все данные исследования внесены в таблицу:

Исследуемый объект

Исходная окраска

Окраска в кислоте

Окраска в щелочи

Ягоды брусники

малиновая

Ягоды клюквы

малиновая

Ягоды черной смородины

малиновая

бордовая

ярко-розовая

желто-зеленая

оранжевая

светло-оранжевая

коричневая

Чай черный

коричневая

темно-коричневый

Вот мои лучшие индикаторы



2. Определение среды некоторых средств бытовой химии с помощью полученных индикаторов

Цель: с помощью полученных индикаторов исследовать косметико-гигиенические и моющие средства.

Оборудование: образцы моющих и косметико-гигиенические средств; растительные индикаторы (из брусники, клюквы, черной смородины и свеклы); пробирки.

Ход опыта : Я растворил выбранные образцы моющих средств и средств бытовой химии в воде, и поочередно добавлял к полученным растворам растворы моих индикаторов. Результаты исследований занесены в таблицу.

Исследуемое вещество

черная смородина

брусника

Кислородный гель для эмали, акрила и гранита.

САНЭЛИТ ЗАО «Ашот»

бледно-розовый

малиново-розовый

малиново-розовый

бордово-бурый

Среда раствора

нейтральная, слабо-кислая

Средство для стекол (с наш.спиртом)

МrMuscule

бледно-розовый

бледно-розовый

грязно-розовый

коричн.-зеленый

Среда раствора слабо-щелочная

Шампунь-кондиционер.

Чистая линия

малиновый

Среда раствора нейтральная

Мыло обыкновенное

бледно-розовый

бледно-розовый

коричн.-зеленый

Среда раствора слабо-щелочная



Результаты исследований:

Средство для мытья стекол и хозяйственное мыло имеют слабо-щелочную среду раствора, поэтому эти средства не должны попадать в глаза и разрушают естественную защиту кожи.

На уроках биологии и химии я узнал, что внешняя поверхность эпидермиса покрыта микроскопически тонким слоем – кислотной мантией. В эпидермисе протекает множество биохимических процессов. В результате образуются кислоты – молочная, лимонная и другие. Плюс к этому: кожное сало и пот. Все это и составляет кислотную мантию кожи. Следовательно, нормальная кожа имеет кислую реакцию, рН кожи составляет в среднем 5,5.

При использовании моющих средств, имеющих щелочную среду, мы нарушаем нормальную кислотную среду кожи рук. Для предохранения кожи рук от негативного воздействия таких средств, нужно работать с ними только в перчатках. Ещё лучше, пользоваться другими средствами: например, руки мыть хорошим туалетным мылом или гелем, или детским мылом, в которые добавлены нейтрализующие щелочь вещества. Они меньше раздражают кожу.

Шампунь в моей семье правильный, среда его раствора близка к среде кожи головы – он совершенно безопасен.

3. Определение среды растворов некоторых

кисломолочных продуктов

Так же я проверил реакцию среды кисломолочных продуктов, имеющихся у нас дома. Но так как растворы природных индикаторов закончились, я работал с бумажным универсальным индикатором. Опустив индикаторную полоску в кефир и домашнюю простоквашу, я заметил, что бумажка порозовела. Я доказал наличие кислоты в этих продуктах.

Это молочная и другие органические кислоты, которые усиливают выделение желудочного сока, улучшают функционирование кишечника, нормализуют его микрофлору. Ученые утверждают, что кисломолочные культуры легче, по сравнению с натуральным молоком, усваиваются организмом и препятствуют размножению вредных патогенных микробов, вызывающих гнилостные процессы.

Хорошо, что в нашей семье любят такие продукты.

ЗАКЛЮЧЕНИЕ

Из литературных и интернет-источников я узнал о действиях химических и природных индикаторов в различных средах, т.е. достиг своей главной цели. Узнал, на какие группы делятся индикаторы, как ведут себя в кислотных, основных и щелочных средах. Оказывается, индикаторы можно использовать для различных целей. Например, чтобы отстирать пятно от ягод сначала нужно застирать вещь в кислой среде, а только потом обычным моющим средством. И еще можно использовать индикаторы для того, чтобы с их помощью определить среду моющих средств и выбрать наиболее приемлемое средство.

После проведения ряда опытов я убедился, что индикаторы в действительности являются веществами, изменяющими окраску при изменении концентрации ионов водорода в растворе, и подтвердил свою гипотезу.

В современном мире при огромнейшем разнообразии химических веществ необходимо знать правила правильного использования этих веществ. Не пренебрегайте инструкцией по применению.

Проведя исследовательскую работу, я пришел к следующим выводам:

Многие природные растения обладают свойствами кислотно-основных индикаторов, способных изменять свою окраску в зависимости от среды, в которую они попадают. Это, так называемые, природные индикаторы, ярко окрашенные цветы и плоды растений;

Растворы растительных индикаторов можно использовать, например, в качестве кислотно-основных индикаторов для определения среды растворов гигиенически-моющих средств и качества продуктов в домашних условиях;

Самодельные индикаторы из природного сырья можно применять на уроках химии в школах, если существует проблема обеспечения школы химическими реактивами.

К сожалению, почти у всех природных индикаторов есть серьезный недостаток: их отвары довольно быстро портятся, поэтому чаще используются более устойчивые спиртовые растворы. Положительным моментом является то, что они экологически безопасны, и их можно приготовить и использовать в домашних условиях.

Надеюсь, что моя работа привлечёт внимание учащихся и педагогов, так как полученная информация может быть использована в узко прикладном направлении, например в домашнем хозяйстве и на даче. А ещё надеюсь, что моя работа будет способствовать развитию у ребят любознательности и наблюдательности.

1. Растительные индикаторы можно использовать и в быту. Сок столовой свеклы в кислой среде изменяет свой рубиновый цвет на ярко-красный, а в щелочной – на желтый. Зная свойство свекольного сока, можно сделать цвет борща ярким. Для этого к борщу следует добавить немного столового уксуса или лимонной кислоты.

2. Для определения состава лекарств, которые употребляют для лечения, можно использовать природные индикаторы. Многие лекарственные препараты представляют собою кислоты, соли и основания. Изучив их свойства, можно обезопасить себя. Например, аспирин (ацетилсалициловую кислоту) и многие витамины нельзя принимать на голодный желудок, так как кислоты, входящие в их состав, будут повреждать слизистую желудка.

3. Результаты исследовательской работы можно использовать для определения среды различных растворов, например, молочных продуктов, бульонов, лимонада и других, а также для определения кислотности почвы, т. к. в зависимости от этого один вид растений может давать высокий урожай, а другие будут угнетенными.

4. "Народный" способ для определения кислотности почвы. Положите в стеклянную посуду 3-4 листа черной смородины или вишни и залейте их стаканом кипятка. Когда вода остынет, бросьте в нее комочек земли. Если вода покраснеет - почва определенно кислая, посинеет - слабокислая, а если станет зеленой - нейтральная.

5. Моющие средства для посуды имеют щелочную среду и при их применении необходимо использовать резиновые перчатки для защиты кожи рук от негативного воздействия, т. к. щелочная среда разрушает кислотную мантию эпидермиса.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

    Аликберова Л.Ю. Занимательная химия. – М.: АСТ-ПРЕСС, 2002.

    Аликберова Л.Ю. Занимательная химия. Книга для учащихся, учителей и родителей. – М.: АСТ-ПРЕСС, 1999.

    Байкова В.М. Химия после уроков. - Петрозаводск: Карелия, 1984.

    Балаев И.И. Домашний эксперимент по химии.(Пособие для учителя) - М.: Просвещение, 1977.

    Габриелян О.С. Химия.11 класс. Базовый уровень: учеб.для ОУ. - М.: Дрофа. 2008.

    Кременчугская М. Химия. – М.: Филологическое общество «Слово»,1995.

    Крешков А.П. Основы аналитической химии, 3 изд., кн. 2 – М., 1971.

    Леенсон И.А. Занимательная химия. - М.: РОСМЭН, 2001.

9. Назарова Т.С, Грабецкий А.А. Химический эксперимент в школе. – М. 1987.

10. Научно – практический журнал «Химия для школьников», №4, 2007.

11.Нифантьев Э.Е. Внеклассная работа по химии с использованием хроматографии.- М.: Просвещение, 1982.

12. Савина Л.А. Я познаю мир. Детская энциклопедия. Химия. – М.: АСТ, 1996.

13. Степин Б.Д., Аликберова Л.Ю. Занимательные задания и эффектные опыты по химии. – М.: Дрофа, 2002.

14. Пилипенко А.Т. Справочник по элементарной химии. – Киев.Наукова думка. 1973.

15. Учебно–методическая газета для учителей химии «Первое сентября», №22, 2007.

16. Храмов В.А. Аналитическая биохимия. - Волгоград: Издательство «Учитель», 2007.

17. Штемплер Г.И. Химия на досуге. – М.: Просвещение, «Учебная литература», 1996.

18. Энциклопедический словарь юного химика. – М.: Педагогика, 1982.

Интернет-ресурсы:

1. http://www.xumuk.ru/encyklopedia/1684.html

3. http://ru.wikipedia.org/wiki.

4. http://www.alhimik.ru

5. http://www.planetseed.com/ruru

6. http ://www . alchemic.ru. «Добрые советы».

Просмотр содержимого презентации
«В мире индикаторов»


В мире индикаторов

Исследовательский проект

ученика 8 класса

Гоголева Сергея,

руководитель Захарова Л.Ю.


Цель работы: Изучить действие химических и природных индикаторов в различных средах

  • изучить литературные источники по теме; рассмотреть классификацию индикаторов; сделать определенные выводы по применению индикаторов в быту и природе; научиться выделять индикаторы из природного сырья; исследовать действие природных индикаторов в различных средах.
  • изучить литературные источники по теме;
  • рассмотреть классификацию индикаторов;
  • сделать определенные выводы по применению индикаторов в быту и природе;
  • научиться выделять индикаторы из природного сырья;
  • исследовать действие природных индикаторов в различных средах.

Из истории открытия…

Роберт Бойль, английский химик

и физик XVII века, впервые обнаружил

вещества, меняющие свой цвет

в зависимости от среды.

лакмусовый

лишайник

лакмусовые

гелиотроп


Индикатор (от латинского indicator - указатель)

индикатор напряжения

индикатор часового типа

индикатор

заряда батареи

индикатор

скрытой проводки

индикатор уровня звука

индикатор износа шин


ХИМИЧЕСКИЕ ИНДИКАТОРЫ

Химические индикаторы - это вещества, изменяющие окраску, люминесценцию или образующие осадок при изменении концентрации какого-либо компонента в растворе.


7 МЕТИЛОРАНЖ бесцветный красный оранжевый синий малиновый розовый желтый" width="640"

Название

индикатора

Нейтральная среда

ЛАКМУС

ФЕНОЛФТАЛЕИН

Кислая

c реда

бесцветный

фиолетовый

Щелочная среда

МЕТИЛОРАНЖ

бесцветный

красный

оранжевый

синий

малиновый

розовый

желтый


В настоящее время химики часто пользуются универсальной индикаторной бумагой



ПРИМЕНЕНИЕ ИНДИКАТОРОВ

Экология

Пищевая промышленность

Сельское хозяйство

ПРИРОДНЫЕ ИНДИКАТОРЫ

Медицина

Домашнее хозяйство

Производство косметических средств


Медицина

Антоцианы - мощные антиоксиданты, в 50 раз сильнее витамина С:

  • выводят радиоактивные вещества, продлевая жизнь клеткам;
  • полезны для зрения;
  • требуются клеткам головного мозга,
  • улучшают память,
  • подавляют рост опухолей.

Сельское хозяйство

Изучение

плодородия почв

Анализ

экологических

вопросов


Анализ средств бытовой

химии и косметических средств

Добавление пищевой

кислоты в борщ сделает его ярко-красным


  • Задачи :
  • 1. Получить природные индикаторы из доступных природных объектов.
  • 2. Составить шкалу изменения цвета для каждого индикатора.
  • Объект исследования : природные растения, обладающие свойствами индикаторов.
  • Предмет исследования: растворы самодельных растительных индикаторов.
  • Методы исследования:
  • Изучение научно-популярной литературы;
  • Получение растворов индикаторов и работа с ними.

1. Приготовление природных индикаторов из растительного сырья

ч. смородина

брусника

клюква

свекла

куркума

морковь

Ч. чай


Таблица действия индикаторов

Исследуемый объект

Исходная окраска

Ягоды брусники

малиновая

Ягоды клюквы

Окраска в кислоте

Ягоды черной смородины

малиновая

розовая

Окраска в щелочи

зеленая

малиновая

розовая

Свекла

Морковь

зеленая

розовая

бордовая

оранжевая

зеленая

ярко-розовая

Куркума

желто-зеленая

светло-оранжевая

желтая

Чай черный

желтая

коричневая

желтая

коричневая

желтая

темно-коричневый



2. Определение среды некоторых средств

бытовой химии с помощью

полученных индикаторов.


Исследуемое вещество

клюква

Кислородный гель для эмали, акрила и гранита.

САНЭЛИТ ЗАО «Ашот»

бледно-розовый

черная смородина

Средство для стекол

(с наш.спиртом)

М rMuscule

бледно-розовый

малиново-розовый

Шампунь-кондиционер.

Чистая линия

брусника

малиново-розовый

Мыло обыкновенное

свекла

бледно-розовый

розовый

малиновый

бледно-розовый

грязно-розовый

бордово-бурый

Вывод

коричн.-зеленый

бледно-розовый

Среда раствора

нейтральная, слабо-кислая

коричн.

коричн.-зеленый

Среда раствора нейтральная

Среда раствора слабо-щелочная


Исследуемые средства

имеют щелочную реакцию растворов


  • Исследуемые молочные продукты имеют кислую реакцию растворов

МКОУ Маршанская средняя школа

Исследовательская работа по химии

«Индикаторы в нашей жизни».

Работу выполнили ученицы 8 класса

Сидорова Лариса

Курышко Анастасия

Бурматова Светлана

Руководитель: Синицина Маргарита

Анатольевна - учитель химии

2016 год

    Введение

    История открытия индикаторов

    Классификация индикаторов.

    Природные индикаторы

    Экспериментальная часть.

    Заключение.

    Список используемой литературы.

1. Введение

В природе мы встречаемся с различными веществами, которые нас окружают. В этом году мы начали знакомиться с интересным предметом - химия. Сколько же в мире веществ? Какие они? Зачем они нам нужны и какую пользу приносят?

Нас заинтересовали такие вещества, как индикаторы. Что такое индикаторы?

На уроках при изучении темы «Важнейшие классы неорганических соединений» мы использовали такие индикаторы как лакмус, фенолфталеин и метилоранж.

Индикаторы (от английского indicate-указывать) - это вещества, которые изменяют свой цвет в зависимости от среды раствора. С помощью индикаторов можно определить среду раствора

Мы решили выяснить: можно ли в качестве индикаторов использовать те природные материалы, которые есть дома.

Цель работы:

Изучить понятие об индикаторах;

Ознакомиться с их открытием и выполняемыми функциями;

Научиться выделять индикаторы из природных объектов;

Исследовать действие природных индикаторов в различных средах;

Методы исследования :

    Изучение научно-популярной литературы;

    Получение растворов индикаторов и работа с ними

2. История открытия индикаторов

Впервые индикаторы обнаружил в 17 веке английский физик и химик Роберт Бойль. Бойль проводил различные опыты. Однажды, когда он проводил очередное исследование, зашел садовник. Он принес фиалки. Бойль любил цветы, но ему необходимо было проводить эксперимент. Бойль оставил цветы на столе. Когда ученый закончил свой опыт он случайно посмотрел на цветы, они дымились. Чтобы спасти цветы, он опустил их в стакан с водой. И – что за чудеса- фиалки, их темно- фиолетовые лепестки, стали красными. Бойль заинтересовался и проводил опыты с растворами, при этом каждый раз добавлял фиалки и наблюдал, что происходит с цветками. В некоторых стаканах цветы немедленно начали краснеть. Ученый понял, что цвет фиалок зависит от того, какой раствор находится в стакане, какие вещества содержатся в растворе. Лучшие результаты дали опыты с лакмусовым лишайником. Бойль опустил в настой лакмусового лишайника обыкновенные бумажные полоски. Дождался, когда они пропитаются настоем, а затем высушил их. Эти хитрые бумажки Роберт Бойль назвал индикаторами, что в переводе с латинского означает «указатель», так как они указывают на среду раствора. Именно индикаторы помогли ученому открыть новую кислоту - фосфорную, которую он получил при сжигании фосфора и растворении образовавшегося белого продукта в воде. В настоящее время на практике широко применяют следующие индикаторы: лакмус, фенолфталеин, метиловый оранжевый.

2. Классификация школьных индикаторов и способы их использования

Индикаторы имеют различную классификацию. Одни из самых распространенных – кислотно-основные индикаторы, которые изменяют цвет в зависимости от кислотности раствора. В наше время известны несколько сот искусственно синтезированных кислотно-основных индикаторов, с некоторыми из них можно познакомиться в школьной химической лаборатории.

Фенолфталеин (продается в аптеке под названием "пурген") - белый или белый со слегка желтоватым оттенком мелкокристаллический порошок. Растворим в 95 % спирте, практически не растворим в воде. Бесцветный фенолфталеин в кислой и нейтральной среде бесцветен, а в щелочной среде окрасится в малиновый цвет. Поэтому фенолфталеин используется для определения щелочной среды.

Метиловый оранжевый - кристаллический порошок оранжевого цвета. Умеренно растворим в воде, легко растворим в горячей воде, практически нерастворим в органических растворителях. Переход окраски раствора от красной к желтой.

Лакмоид (лакмус) - порошок черного цвета. Растворим в воде, 95 % спирте, ацетоне, ледяной уксусной кислоте. Переход окраски раствора от красной к синей.

Индикаторы обычно используют, добавляя несколько капель водного или спиртового раствора, либо немного порошка к исследуемому раствору.

Другой способ применения - использование полосок бумаги, пропитанных раствором индикатора или смеси индикаторов и высушенных при комнатной температуре. Такие полоски выпускают в самых разнообразных вариантах - с нанесенной на них цветной шкалой - эталоном цвета или без него.

3. Природные индикаторы

Кислотно-основные индикаторы бывают не только химическими. Они находятся вокруг нас, только обычно мы об этом не задумываемся. Это растительные индикаторы, которые можно использовать в быту. Например, сок столовой свеклы в кислой среде изменяет свой рубиновый цвет на ярко-красный, а в щелочной – на желтый. Зная свойство свекольного сока, можно сделать цвет борща ярким. Для этого к борщу следует добавить немного столового уксуса или лимонной кислоты. Если в стакан с крепким чаем капнуть лимонный сок или растворить несколько кристалликов лимонной кислоты, то чай сразу станет светлее. Если же растворить в чае питьевую соду, раствор потемнеет.

В качестве природных индикаторов чаще всего используют соки или отвары ярко окрашенных плодов или других частей растений. Такие растворы необходимо хранить в темной посуде. К сожалению, у природных индикаторов есть серьезный недостаток: их отвары довольно быстро портятся – скисают или плесневеют (более устойчивы спиртовые растворы). При этом трудно или невозможно отличить, например, нейтральную среду от слабокислой или слабощелочную от сильнощелочной. Поэтому в химических лабораториях используют синтетические индикаторы, резко изменяющие свой цвет в достаточно узких границах рН.

Экспериментальная часть

Какие же индикаторы можно использовать дома? Для ответа на этот вопрос мы исследовали растворы соков плодов и цветков растений, таких как каланхоэ (оранжевые, красные и белые цветы), морковь, синий и желтый лук (шелуха и сама луковица), тюльпан (цветы красного цвета и зеленые листья), герань (цветы розовые и белые), одуванчик, анютины глазки,черная смородина и малина (ягоды). Мы готовили растворы отжатых соков этих растений и плодов, так как растворы быстро портятся, то мы готовили их непосредственно перед опытом следующим образом: немного листьев, цветов или плодов растирали в ступке, затем добавляли немного воды. Приготовленные растворы природных индикаторов исследовали раствором кислоты (соляная кислота) и щелочи (гидроксид натрия). Все взятые для исследований растворы меняли или не меняли свой цвет в зависимости от среды. Результаты полученных исследований были занесены в таблицу

Исследуемый объект

Исходная окраска раствора в нейтральной среде

Окраска в кислой среде

Окраска в щелочной среде

Каланхоэ (оранжевые цветы)

бледно-желтая

желтый

бледно-желтый

Каланхое (красные цветы)

темно-бордовая

розовая

изумрудно-зеленая

Каланхоэ (розовые цветы)

сиреневая

розовая

зеленая

Тюльпан (цветы красные)

темно-бордовая

темно-оранжевая

желто-зеленая

Тюльпан (листья)

светло-зеленая

без изменений

зеленая

Синий лук (шелуха)

Синий лук (луковица)

Желтый лук (шелуха)

Желтый лук (луковица)

Морковь (сок)

оранжевая

Свекла (сок)

Одуванчик

желто-зеленая

светло-желтая

темно-желтая

Ягоды черной смородины

Ягоды малины

Герань (цветы ярко-розовые)

ярко-розовая

ярко-розовая

светло-коричневая

Герань (цветы белые)

белая

светло-желтая

белая

Анютины глазки (цветы фиолетовые)

фиолетовая

ярко-розовая

изумрудно-зеленая

Анютины глазки (цветы желтые с коричневой серединкой)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

1.1 Лакмус

1.2 Антоцианы

Глава 2

2.1 Особенности фиалки и леканоры

2.2 Особенности растений содержащих антоцианы

2.3 Исследования природных объектов на возможность использования их в качестве индикаторов

Заключение

Библиографический список

Приложение 1

Приложение 2

Приложение 3

Приложение 4

ВЕДЕНИЕ

Цель работы: изучение природных индикаторов их свойств и применение.

Объект исследования: разные части растений и их экстракты.

Задачи исследования: доказать возможность использования экстрактов плодов растений в качестве химических индикаторов.

Лимонная кислота, уксус, нашатырный спирт, известь, аскорбиновая кислота, щавелевая кислота - вещества, часто встречающиеся в быту. Среди кислот и щелочей много опасных, агрессивных веществ, способных вызвать тяжелые химические ожоги. Многие растворы кислот и щелочей бесцветны, не имеют запаха, их нельзя пробовать на вкус. Как же различить эти вещества? Определить какими именно свойствами обладает вещество можно с помощью растений обладающих индикаторными свойствами, которые можно использовать в различных сферах.

Индикаторы - это вещества, которые изменяют свой цвет в зависимости от среды раствора.

Актуальность темы заключается в том, что в настоящее время возрос интерес к растениям в связи с их применением в различных областях науки, таких как химия, биология, экология и медицина. Например, по окраске растений и её интенсивности экологи определяют наличие вредных веществ в атмосферном воздухе и почве или определить кислотность почвы на участке. Растворы растительных индикаторов можно приготовить самостоятельно и применять в химической лаборатории и домашних условиях при необходимости определения среды раствора. Свойства растворов индикаторов зависит от способа получения;

Растворы индикаторов надо готовить прямо перед опытом, потому что они быстро портятся.

индикатор лакмус антоциан природный

ГЛАВА 1

1.1 Лакмус

Лакмус -- красящее вещество природного происхождения, один из первых и наиболее широко известных кислотно-основных индикаторов.

Впервые индикаторы обнаружил в 17 веке английский химик и физик Роберт Бойль.

Роберт Бойль готовился к началу, в ретортах что-то кипело, когда зашел садовник. Он принес корзину с фиалками. Он взял несколько цветков, понюхал и положил их на стол. Опыт начался, он открыл колбу, из нее повалил едкий пар. Когда опыт кончился, Бойль взглянул на цветы, они дымились. Чтобы спасти цветы, он опустил их в стакан с водой. Темно- фиолетовые лепестки фиалки, стали красными. Ученый приготовил разные растворы и в каждый опустили по цветку. В некоторых стаканах цветы немедленно начали краснеть. Ученый понял, что цвет фиалок зависит от того, какой раствор находится в стакане, какие вещества содержатся в растворе. Эксперименты следовали один за другим. Лучшие результаты дали опыты с лакмусовым лишайником. Тогда Бойль опустил в настой лакмусового лишайника обыкновенные бумажные полоски. Дождался, когда они пропитаются настоем, а затем высушил их. Эти хитрые бумажки Роберт Бойль назвал индикаторами, что в переводе с латинского означает «указатель», так как они указывают на среду раствора.

Фактически природный лакмус представляет собой сложную смесь 10--15 различных субстанций.

Для получения лакмуса растительное сырьё измельчают до порошкообразного состояния и в течение нескольких недель вымачивают в содово-аммиачном растворе (сода или поташ + NH 4 OH) при постоянном перемешивании. После отделения осадка полученный продукт высушивается и размалывается. В результате образуется порошок. Прессовка осадка с гипсом или мелом позволяет получить легко крошащиеся блоки готового сухого лакмуса.

1.2 Антоцианы

Антоцианы - это одни из самых распространённых пигментов в растительном царстве. Известно большое количество природных объектов, богатых антоцианами: анютины глазки, малина, вишня, земляника, краснокочанная капуста, черника, клюква, клубника, черный виноград и многие другие (приложении 2). Они образуются в процессах гидролиза крахмала и по своему происхождению являются безазотистыми соединениями, близким к глюкозидам - соединениям сахара с неуглеводной частью.

Строение антоцианов установлено в 1913 немецким биохимиком Р. Вильштеттером. Все они имеют С15-углеродный скелет -- два бензольных кольца А и В, соединенные С3-фрагментом, который с атомом кислорода образует г-пироновое кольцо. При этом от других флавоноидных соединений антоцианы отличаются наличием положительного заряда и двойной связи в С-кольце. Известно более 500 индивидуальных антоциановых соединений, и число их постоянно увеличивается. При всем их огромном многообразии антоциановых соединений выделяют лишь шесть основных производных антоцианидинов: пеларгонидина, цианидина, пеонидина, дельфинидина, петунидина и мальвидина, которые отличаются боковыми радикалами R1 и R2 (приложение 1). Антоцианы придают тканям растений фиолетовую, синюю, красную, оранжевую и другие окраски. Эта окраска зависит от рН клеточного содержимого, и потому может меняться при созревании плодов, отцветании цветков -- процессах, сопровождающихся закислением клеточного содержимого. При этом окраска растений изменяется от зелёных до красных и синих цветов. Антоцианы хорошо растворимы в воде и присутствуют в соке вакуолей. Диапазон цветов изменяется благодаря наличию в растениях в основном трёх моделей антоцианов, различных между собой числом гидроксильных групп: пеларгонидин (красный), цианидин (фиолетовый) и дельфинидин (синий). Красный пеларгонидин содержится в цветках герани, плодах земляники, корнеплодах редиса. Цианидин находится в цветках тюльпанов, васильков, плодах черной смородины, ежевики. Дельфинидин определяет окраску цветков гиацинта, плодов баклажана, граната.

Существует ряд факторов, которые влияют на содержание антоцианов в сырье или продукте: разбавление или концентрирование, кислотность среды (рН), температура, действие окислителей, ферментов, ионов металлов, продолжительность хранения.

Вывод:

На первый взгляд, "хобби" к цветам было совершенно бесполезным и ничем не могло помочь Бойлю в его настоящей профессии, но ошибочно, что увлечения и наука не взаимосвязаны. Если бы Бойль не любил цветы и не принес бы корзину с фиалками в свою лабораторию, то неизвестно, кто, когда и каким образом открыл бы индикаторы. Открытие Боля сподвигло ученых исследовать растения на наличие красящих веществ и в 1913-1915 годах немецкий биохимик Рихард Вильштеттер открыл антоцианы.

ГЛАВА 2

2.1 Особенности фиалки и леканоры

Природный лакмус изготавливают из леканоры и фиалки. В чистом виде лакмус представляет собой тёмный порошок со слабым запахом аммиака. Хорошо растворяется в чистой воде, образуя растворы фиолетового цвета.

В кислых средах (pH<4,5) лакмус приобретает красную окраску, в щелочных (pH>8,3) -- синюю.

Основными компонентами лакмуса считаются:

· азолитмин (англ. Azolitmin, сост. C9H10NO5) -- может быть выделен из лакмуса экстракцией и использоваться как самостоятельный кислотно-щелочной индикатор;

· эритролитмин (англ. Erythrolitmin или Orcein Erythrolein, сост. С13H22O6);

Фиалка

Листья содержит слизь, соль виннокаменной кислоты, салициловую кислоту, витамин С. Препараты фиалки обладают отхаркивающим, мягчительным, потогонным и мочегонным действием. Лечебные свойства фиалки очень действенны при воспаление почек, боли в суставах, бронхит. Настой из фиалки употребляют при шуме в ушах, при заикании у детей.

Леканора съедобная

Леканора съедобная род накипных лишайников семейство леканоровых порядка круглоплодных. Из леканоры готовят лакмус. Таллом в виде беловатых, сероватых, желтоватых, коричневатых и других толстых или тонких корочек.

Лишайники - индикаторы состояния окружающей среды, они очень чувствительны к загрязнению атмосферы, поэтому в крупных городах, как правило, не встречаются. При повышение загрязнения воздуха отмечается исчезновение лишайников: сначала вымирают кустистые, потом листовые, потом накипные.

2.2 Особенности растений содержащих антоцианы

В сутки здоровому человеку необходимо не менее 200 мг этих веществ, а в случае болезни - не менее 300 мг. Поступая в организм человека с фруктами и овощами антоцианы проявляют действие, схожие с витамином Р, они поддерживают нормальное состояние кровяного давления сосудов, предупреждая внутренние кровоизлияния.

Черная смородина

Свежие ягоды чёрной смородины широко применяются в питании здорового человека как источник витамина «С». Из ягод варят варенье, делают желе, готовят компот, сок, пюре, мармелад, вино Свежезамороженные ягоды и сок черной смородины - великолепное природное средство для лечения острых респираторных заболеваний, бронхита и воспаления легких, при гастритах, язве желудка.

В ягодах черной смородины содержится в среднем 8% сахаров (преимущественно легкоусвояемых глюкозы и фруктозы), 2,5% органических кислот (яблочной, винной, лимонной), красящие и пектиновые вещества, микроэлементы (медь, марганец, железо, алюминий), летучие фитонциды, эфирные масла. Ягоды необычайно богаты калием -- веществом, выводящим из организма воду. Из витаминов содержатся В1, В2, РР, каротин.

Вишня

Вишня - диетический продукт, она повышает аппетит, улучшает процесс пищеварения. Плоды вишни оказывают легкое послабляющее воздействие.

Вишня обладает антисептическими и противовоспалительными свойствами. Вишневый сок утоляет жажду при повышенной температуре. Вишня благотворно влияет на центральную нервную систему, ее отвар применяли при психических заболеваниях и эпилепсии.

Слива

Сливы богаты витаминами и минералами, антицианинами, подавляющими опухолевые процессы.

Сливы - это замечательное средство для улучшения аппетита и уникальный источник витамина Е. Она способствует расслаблению гладкой мускулатуры внутренних органов организма. Варенье из слив дает легкий мочегонный и слабительный эффект и часто используется при лечении изжоги, запоров и других нарушений в работе желудочно-кишечного тракта.

Шиповник

Шиповник является настоящим рекордсменом по содержанию иммуностимулирующего витамина С, богаты плоды и витаминами А, К, Е, Р, антиоксидантами и другими минеральными и биологически активными веществами. Благодаря отсутствию токсичности, его можно принимать в любых дохах и количествах, не опасаясь развития побочных эффектов.

Отвары из шиповника являются желчегонным, поливитаминным, слабомочегонным, понижающим артериальное давление средством. Плоды и корни стимулируют выработку кровяных телец, укрепляют сосуды, улучшают пищеварение и аппетит, повышают сопротивляемость организма к простуде и различным инфекциям.

Сок и чай из шиповника полезен для почек, желудка, печени и всего желудочно-кишечного тракта, выводит соли, токсины и шлаки из организма, нормализует кровообращение, активизирует обмен веществ, улучшает память, замедляет старение, предотвращает атеросклероз, дарит хорошее настроение и бодрость.

Облепиха

Плоды облепихи и облепиховое масло уменьшают боли и прекращают воспалительные процессы, ускоряют грануляцию и эпителизацию тканей, способствуют быстрому заживлению ран и обладают бактерицидным и поливитаминным действием.Масло облепихи используют и для приема внутрь и для наружного применения. Оно обладает болеутоляющим эффектом, ранозаживляющими и противовоспалительными свойствами. Лечит пролежни, трофические язвы, гнойные раны, ожоги.

Употребляя облепиху регулярно и в небольших количествах, можно избежать многих заболеваний и поддерживать организм в зимний период.

Облепиховое масло незаменимо при ринитах, фарингитах, ларингитах, тонзиллитах. Листья облепихи накапливают дубильные вещества, которые являются действующим началом лекарственного средства -- гипорамина, обладающего противовирусной активностью. Получаемый из листьев облепихи гипорамин в форме таблеток для рассасывания применяется как лечебно-профилактическое средство при гриппе (А и В), а также при лечении других острых респираторных вирусных инфекций.

Антоцианы оказывают бактерицидное действие - они могут уничтожать различные виды вредоносных бактерий.

Полезные свойства антоцианов используются в медицине при производстве различных биологических добавок, особенно для применения в офтальмологии. Ученые обнаружили, что антоцианы хорошо накапливаются в тканях сетчатки. Они укрепляют ее сосуды, уменьшают ломкость капилляров, как это бывает, например, при диабетической ретинопатии. Антоцианы улучшают строение волокон и клеток соединительной ткани, восстанавливают отток внутриглазной жидкости и давление в глазном яблоке, что используют при лечении глаукомы.

Антоцианы являются сильными антиоксидантами - они связывают свободные радикалы кислорода и препятствуют повреждению мембран клеток. Это тоже положительно сказывается на здоровье органа зрения. Люди, регулярно употребляющие в пищу богатые антоцианами продукты, имеют острое зрение. Также их глаза хорошо переносят высокую нагрузку и легко справляются с утомляемостью.

Применение и биохимическая роль природных индикаторов.

Свойства природных индикаторов имеют широкое применение (приложение 3).

2.3 Исследование природных объектов на возможность использования их в качестве индикаторов

Для исследования были взяты плоды: облепиха, черная смородина, вишня, слива, шиповник.

Отделили соцветия от стеблей и растерли в фарфоровых ступнях до получения однородной массы. Разложили по колбам и провели экстракцию с помощью органического растворителя - ацетона. Колбы плотно прикрыли пробками и выдержали в течении недели. Экстракт отделили от основной массы и в полученный раствор опустили нарезанные фильтровальные бумажки. После пропитки их вынимали, высушивали при комнатной температуре, определяя цвет исходного экстракта на фильтровальной полоске. Затем одну полоску опускали в воду, вторую в NaOH, третью в HCl.

Результаты исследования (приложение 4).

Вывод:

Они широко используются в традиционной и нетрадиционной медицине. Синтез антоцианов в листьях растений в условиях антропогенного загрязнения может служить диагностическим признаком экологического состояния среды.

ЗАКЛЮЧЕНИЕ

Химия - это наука, которая непосредственно связана с практической деятельностью человека. Исследуя растения на индикационные свойства, я определила, что в плодах, листья и цветах растений содержатся красители, обладающие индикаторными свойствами. В природе таких веществ большое количество. Получить растительные индикаторы можно из любого вида сырья (сахарного сиропа, свежих ягод, листьев и цветов растений) в виде отваров, вытяжек и сока.

Чтобы какое-либо вещество могло служить индикатором, оно должно удовлетворять следующим необходимым условиям:

* должно быть слабой кислотой или слабым основанием;

* его молекулы и ионы должны иметь разную окраску;

* окраска их должна быть чрезвычайно интенсивной, чтобы быть заметной при добавке к испытуемому раствору малого количества индикатора.

К сожалению, почти у всех природных индикаторов есть серьезный недостаток: их отвары довольно быстро портятся - скисают или плесневеют.

Поэтому отвар их надо готовить непосредственно перед опытом, но чаще используются более устойчивые спиртовые растворы. Другой недостаток - слишком широкий интервал изменения цвета. Поэтому в химических лабораториях используют синтетические индикаторы, резко изменяющие свой цвет в достаточно узких границах рН.

· Природные индикаторы можно использовать на уроках химии, элективных курсах.

· Растительные индикаторы можно использовать в быту. Сок столовой свеклы в кислой среде изменяет свой рубиновый цвет на ярко-красный, а в щелочной - на желтый. Зная свойство свекольного сока, можно сделать цвет борща ярким. Для этого к борщу следует добавить немного столового уксуса или лимонной кислоты.

· Для определения состава лекарств, которые употребляют для лечения, можно использовать природные индикаторы.

· Результаты исследовательской работы можно использовать для определения рН (водородный показатель) различных растворов, например, молочных продуктов, бульонов, лимонада и других, а также для определения кислотности почвы, так как на одной и той же почве в зависимости от ее кислотности один вид растений может давать высокий урожай, а другие будут угнетенными.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Артамонов В.И. Занимательная физиология растений. - М.: Агропромиздат, 1991. - 337с.

2. Байкова В.М. Химия после уроков. Петрозаводск «Карелия», 1976. - 175 с.

3. Большая Советская Энциклопедия: в 30 т.: т. 2 / Гл. ред.: Прохоров А.М. -- М.: Сов. Энцикл., 1970. -- 97 с.

4. Меженский В.Н. Растения-индикаторы. М.: ООО «Издательство ACT»; Донецк: «Сталкер», 2004 -- 76 с.

5. Оганесян Э. Т. Руководство по химии поступающим в вузы. - М.: Высш. школа, 1991. - 464с.

6. Семенов П.П. «Индикаторы из местного растительного материала», // журнал Химия в школе. №1, 1984 - 73 с.

7. Химическая энциклопедия: в 5 т.: т. 2 / Гл. ред.: Кнунянц И.Л. - М.: Сов. Энцикл., 1990 - 671 с.

8. Энциклопедия для детей. Том. 17. Химия / Гл. ред.: Володин В.А. - М.: Аванта+, 2002 - 640 с.

9. http://www.edudic.ru/. Биофлавоноиды. Химическая энциклопедия

10. http://ru.wikipedia.org/wiki/. Лакмус. Википедия. Свободная энциклопедия.

11. http://www. moizveti.ucoz.ru/. Мой цветочный мир.

12. http://travi.uvaga.biz/. Антоцианы. Лечебные травы.

13. http://www.valleyflora.ru/. Удивительный мир растений.

П РИЛОЖЕНИЕ 1

Названия растительных пигментов

Название

Сокращённое название

Нахождение в природе

Пеларгонидин

Малина, клубника, виноград

Цианидин

Клубника, вишня, арония, брусника, черника, клюква, ежевика, гранат, малина, слива, черешня, виноград, черная смородина, красная смородина, жимолость

Пеонидин

Черника, ежевика, клюква, черешня

Дельфинидин

Вишня, черника, виноград, черная смородина, гранат

Петунидин

Черника, виноград

Мальвидин

Клубника, черника, виноград

Общая формула антоцианов.

ПРИЛОЖЕНИЕ 2

Растения, содержащие антоцианы

Черная смородина

Облепиха

Шиповник

ПРИЛОЖЕНИЕ 3

Применение природных индикаторов

ПРИЛОЖЕНИЕ 4

Изменение окраски экстрактов в кислых, щелочных и нейтральных средах

Сырье для приготовления индикаторов

Экстракт

Цвет раствора

в кислой среде рН > 7

в щелочной среде рН < 7

в нейтральной среде рН=7

Бледно-желтый

Бледно-желтая

Бледно-розовая

бесцветная

Облепиха

Бесцветный

Бесцветный

Бесцветный

Черная смородина

Бледно-розовый

Бесцветная

Бесцветная

Бесцветная

Бесцветная

Шиповник

Бледно-оранжевый

Оранжевый

Бледно-оранжевый

Бледно-оранжевый

Размещено на Allbest.ru

...

Подобные документы

    Понятие об индикаторах, их классификация, история открытия и методика изготовления. Растительные пигменты, антоцианы и их свойства. Применение и биохимическая роль природных индикаторов. Определение рН среды средств бытовой химии и косметических средств.

    творческая работа , добавлен 25.12.2013

    Понятие, назначение и классификация индикаторов. Строение и свойства полианилина. Влияние природы инициатора и полимерной матрицы на структуру и свойства композиционных материалов. Синтез композитных материалов на основе пленки Ф-4СФ и полианилина.

    курсовая работа , добавлен 18.07.2014

    Понятие и сущность индикаторов. Индикаторные и безиндикаторные титриметрические методы. Индикаторы, особенности и требования к ним. Классификация индикаторов. Теоретические кривые титрования, их расчет и использование для выбора индикатора.

    реферат , добавлен 23.01.2009

    Подбор кислотно-основных индикаторов в зависимости от рассчитанных параметров протолитических ТКТ. Ионная и хромофорная теории, их синтез. Изменение окраски индикатора. Момент окончания титрования. Правильный выбор индикатора. Индикаторные погрешности.

    реферат , добавлен 23.01.2009

    Сущность и классификация методов кислотно-основного титрования, применение индикаторов. Особенности комплексонометрического титрования. Анализ методов осадительного титрования. Обнаружение конечной точки титрования. Понятие аргенометрии и тицианометрии.

    контрольная работа , добавлен 23.02.2011

    Понятие аминокислот, их сущность, строение, история открытия, структура, свойства, классификация, назначение и применение. Аммиак, его определение, основные физические и химические свойства, особенности получения, применение и физиологическое действие.

    реферат , добавлен 17.12.2009

    Характеристика, основные физические и химические свойства лития. Использование соединений лития в органическом синтезе и в качестве катализаторов. История открытия лития, способы получения, нахождение в природе, применение и особенности обращения.

    доклад , добавлен 08.04.2009

    Понятие индикаторов как химических веществ, изменяющих окраску, люминесценцию, образующих осадок при изменении концентрации какого-либо компонента в растворе. Обратимые и необратимые индикаторы, их основные виды. Точка эквивалентности - момент титрования.

    презентация , добавлен 15.04.2014

    История открытия элемента и его нахождение в природе. Способы получения металлов из руд, содержащих их окислы. Восстановление двуокиси титана углем, водородом, кремнием, натрием и магнием. Физические и химические свойства. Применение титана в технике.

    реферат , добавлен 24.01.2011

    История открытия стронция. Нахождение в природе. Получение стронция алюминотермическим методом и его хранение. Физические свойства. Механические свойства. Атомные характеристики. Химические свойства. Технологические свойства. Области применения.

творческая работа

8 Применение природных индикаторов в народном хозяйстве и быту

Кроме медицины антоцианы также используются и в других областях народного хозяйства. Например, в сельском хозяйстве, для оценке химического состава почвы, степени её плодородия, при разведке полезных ископаемых. Добавив в антоциановый раствор горсть земли, можно сделать заключение о ее кислотности, так как на одной и той же почве в зависимости от ее кислотности один вид растений может давать высокий урожай, а другие будут угнетенными.

Или взять хотя бы всем известный картофель. Он имеет различную окраску кожуры, глазков, проростков и мякоти: белую, желтую, розовую, красную, синюю, темно-фиолетовую и даже черную. Различие окраски картофеля зависит от содержащихся в нем пигментов: белая - от бесцветных лейкоантоцианов или катехинов, желтая - от флавонов и флавоноидов, красная и фиолетовая - от антоцианов. Окрашенные клубни картофеля, как правило, богаче необходимыми для нашего организма веществами. Так, например, клубни с желтой мякотью имеют повышенное содержание жира, каротиноидов, рибофлавина и комплекса флавоноидов. За счет способности антоцианов менять свою окраску можно наблюдать изменение цвета клубней картофеля в зависимости от применения минеральных удобрений и ядохимикатов. При внесении фосфорных удобрений картофель становиться белым, сульфат калия придаёт розовый цвет. Окраска клубней меняется под влиянием ядохимикатов, содержащих медь, железо, серу, фосфор и другие элементы .

Такими свойствами обладают и другие растения содержащие природные индикаторы. Что позволяет оценить экологическую обстановку. При экологическом мониторинге загрязнений, использование растений содержащих природные индикаторы часто дает более ценную

информацию, чем оценка загрязнения приборами. К тому же такой способ мониторинга состояния окружающей среды проще и экономичнее .

Окраска антоцианов связанна с показателем рН среды. При рН < 6 окраска карминово-красная, 6 -- фиолетовая, 8 -- синяя, 10 -- зеленая. Так, розовая гортензия, растущая на щелочных почвах, при подкислении грунта квасцами приобретают голубую окраску. Синие гиацинты, растущие вблизи муравейника, под влиянием паров муравьиной кислоты превращаются в красные . Для садоводов так же важен цвет семян, листьев и стеблей растений. Фиолетовая окраска - является индикатором на содержание в них углеводов - сахарозы, фруктозы и глюкозы, которые обусловливают холодостойкость растений. По этому характерному признаку можно вести предварительный отбор на морозоустойчивость растений, что не маловажно в нашей полосе. Так же антоцианы применяются в косметике, т.к. обладают стабилизирующим эффектом и являются коллагенами и в пищевой промышленности в виде добавки E163 в качестве природных красителей. Они применяются в производстве кондитерских изделий, напитков, йогуртов и других пищевых продуктов.

Растительные индикаторы можно использовать и в быту:

· определять среду растворов различных средств бытовой химии и косметических средств (приложение 5);

· удаление пятен растительного происхождения (приложение 5).

Геохимия алюминия

В биосфере Алюминий - слабый мигрант, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органических кислот...

Жизнь и деятельность Д.И. Менделеева. Периодический закон

Исследования Д.И. Менделеева по органической химии связаны с его работами в области нефтяной, химической и угольной промышленности...

Свойства природных индикаторов имеют широкое применение (приложение 4)...

Изучение свойств природных индикаторов, содержащихся в растениях

Данные последних лет свидетельствуют, что красящие вещества растений обладают многообразными лечебными эффектами и благотворно влияние на организм человека. Антоцианы имеют огромное биохимическое значение...

Изучение свойств природных индикаторов, содержащихся в растениях

Для приготовления индикаторов из растительного сырья рекомендуется, использовать окрашенные растения или их части. Выбор растительного материала для приготовления индикаторов неограничен...

Изучение свойств природных индикаторов, содержащихся в растениях

Для приготовления растительных индикаторов я выбрала следующие методы: Опыт № 1. Приготовление индикаторов из ягодного сахарного сиропа и свежих ягод. Цель: приготовление вытяжки антоцианов. Оборудование: сахарный сироп из клубники...

Минерал магнезит

Основной потребитель магнезита (более 95%) огнеупорная промышленность, где после обжига или плавления магнезит используется для изготовления магнезитовых, хромомагнезитовых огнеупорных изделий, которые применяются для кладки мартеновских...

Нанотехнологии. История развития

Основными направлениями использования нанотехнологий и наноматериалов в сельском хозяйстве являются биотехнология, прежде всего это относится к генной инженерии, производству и переработке продукции агропромышленного комплекса...

Обезжелезивание воды

Исходным материалом для образования и накопления железа в природных водах являются водовмещающие породы и породы, с которыми вода контактирует в процессе своей миграции. К их числу относятся песчано-гравийные и глинистые материалы...

Применение органических реагентов в аналитической химии

Кроме использования органических соединений для образования металлокомплексов...

Роль силикатной промышленности в народном хозяйстве

Как видно из вышеописанного большая часть силикатов используется в основном в строительстве. Также нельзя приуменьшать роль соединений кремния в таких отраслях промышленности, как производство товаров широкого потребления (посуды...

Свойства адамантана

В настоящее время единственным природным продуктом, содержащим адамантан и его гомологи, является нефть. Содержание этого углеводорода в нефти составляет всего 0,0001--0,03 % (в зависимости от месторождения)...

Свойства алюминия и области применения в промышленности и быту

Индикатор - прибор, устройство, информационная система, вещество - объект, отображающий изменение какого-либо параметра контролируемого процесса или состояния объекта в форме...

Экономическая оценка эффективности применения композитов Ф-4СФ/полианилин в качестве рН-индикаторов

Было проведено исследование для определения экономической оценки эффективности применения композитов Ф-4СФ/полианилин по сравнению с традиционными индикаторами...