Катастрофа приближается. Ученые доказали смещение орбиты Земли. Колебания формы орбиты и оси Земли - результат глобальных катастроф. О причине разрушений, изменения климата и оледенений на Земле - Земля до потопа: исчезнувшие континенты и цивилизации Изме

Что вызывает изменение климата Земли?

Астроном Милютин Миланкович (1879-1958) изучал изменение орбиты вращения Земли вокруг Солнца и наклон оси нашей планеты. Он предположил, что циклически происходящие изменения между ними являются причиной долгосрочной смены климата.

Изменение климата – сложный процесс, на него влияют многие факторы. Основной из них – взаимосвязь Земли и Солнца.

Миланкович изучал три фактора:

    Изменение наклона земной оси;

    Отклонения в форме орбиты вращения Земли вокруг Солнца;

    Прецессию изменения положения наклона оси по отношению к орбите. .


Земная ось не перпендикулярна плоскости своей орбиты. Наклон составляет 23,5°. Это дает Северному полушарию возможность получать больше солнечных лучей и удлинять день в июне. В декабре солнца становится меньше, и день укорачивается. Этим и объясняется смена времен года. В Южном полушарии времена года идут в обратном порядке.

Отклонение земной оси.

Изменение орбиты Земли.


Земля

Земля без смены времен года, наклон оси 0°.


Конец июня: лето в Северном полушарии, зима – в Южном.


Конец декабря: лето в Северном полушарии, зима – в Южном.

Наклон земной оси

Если бы наклона оси не было, то у нас не было бы времен года, а день и ночь в течение всего года длились бы одинаково. Количество солнечной энергии, достигающей определенной точки Земли, было бы постоянным. Сейчас ось планеты находится под углом 23,5°. Летом (с июня) в Северном полушарии оказывается так, что северные широты получают больше света, чем Южные. Дни становятся длиннее, а положение солнца – выше. В то же время в Южном полушарии – зима. Дни – короче, а солнце – ниже.

Спустя полгода Земля переходит по своей орбите на противоположную сторону Солнца. Наклон остается таким же. Теперь лето в Южном полушарии, дни дольше, а света – больше. В Северном полушарии сейчас зима.

Миланкович предположил, что наклон земной оси не всегда равен 23,5°. Время от времени происходят колебания. Он подсчитал, что изменения лежат в интервале от 22,1° до 24,5°, повторяется это с периодом в 41 000 лет. Когда наклон меньше, то летом температура ниже обычного, а зимой – выше. При увеличении наклона наблюдаются более экстремальные климатические условия.

Как все это влияет на климат? Даже при увеличении температуры зимой все равно достаточно холодно для снега в удаленных от экватора областях. Если лето холодное, то, возможно, что снег зимой в высоких широтах так же будет таять медленнее. Год за годом он будет наслаиваться, образуя ледник.

В сравнении с водой и сушей, снег отражает больше солнечной энергии в космос, вызывая дополнительное похолодание. С этой точки зрения, здесь имеет место механизм положительной обратной связи. Вследствие понижения температуры дополнительно накапливается снег и увеличиваются ледники. Отражение со временем увеличивается, а температура снижается, и так далее. Возможно, именно так начинались ледниковые периоды.

Форма орбиты вращения Земли вокруг Солнца

Второй изучаемый Миланковичем фактор – форма орбиты вращения Земли вокруг Солнца. Орбита имеет не идеально круглую форму. В определенное время года Земля находится к Солнцу ближе, чем обычно. Значительно больше энергии Солнца Земля получает, находясь как можно ближе к светилу (в точке перигелия), в сравнении с максимальным удалением (точка афелия).

Форма земной орбиты меняется циклически с периодом 90 000 и 100 000 лет. Иногда форма становится более вытянутой (эллиптической), чем сейчас, поэтому различие в количестве солнечной энергии, получаемой в перигелии и афелии, будет большим.

Перигелий сейчас наблюдается в январе, афелий – в июле. Такая смена делает климат Северного полушария более мягким, принося дополнительное тепло зимой. В Южном полушарии климат более суровый, чем был бы, если бы орбита вращения Земли вокруг Солнца была круглой.

Прецессия

Есть и другая сложность. Ориентация земной оси со временем меняется. Подобно волчку, ось движется по кругу. Такое движение называют прецессионным. Цик такого движения составляет 22 000 лет. Это вызывает постепенную смену времен года. Одинадцать тысяч лет назад Северное полушарие было наклонено ближе к солнцу в декабре, чем в июне. Зима и лето менялись местами. Спустя 11 000 лет все снова изменилось.

Все три фактора: наклон оси, форма орбиты и прецессия меняют климат планеты. Так как это происходит в различных масштабах времени, то взаимодействие этих факторов сложно. Иногда они усиливают эффект друг друга, иногда – ослабляют. К примеру, 11 000 лет назад прецессия вызывала начало лета в Северном полушарии в декабре, эффект увеличения солнечного излучения в перигелии в январе и уменьшение в афелии в июле усилит межсезонную разницу в Северном полушарии, вместо привычного нам сейчас смягчения. Не все так просто как кажется, так как даты перигелия и афелия так же сдвигаются.

Другие факторы, влияющие на климат

Помимо эффекта смещения движения Земли, есть и другие влияющие на климат факторы?


История космонавтики, как и любой другой отрасли, хранит примеры остроумных решений, когда желаемая цель достигалась красивым и неожиданным способом. СССР/России не повезло с доступностью геостационарной орбиты. Но вместо того, чтобы достать до нее более тяжелыми ракетами или пытаться снизить массу полезной нагрузки, разработчиков осенила идея использования специальной орбиты. Об этой орбите и спутниках, которые ее используют до сих пор, наш сегодняшний рассказ.

Физика

Говоря о геостационарных и высокоэллиптических орбитах необходимо вспомнить такое понятие как наклонение орбиты . В данном случае, наклонение орбиты - это угол между плоскостью экватора Земли и плоскостью орбиты спутника:

Если мы стартуем с космодрома и начинаем разгоняться строго на восток, то получившаяся орбита будет иметь наклонение, равное широте космодрома. Если мы начинаем разгоняться, отклонившись к северу, то получившееся наклонение будет больше. Если мы, подумав, что это должно уменьшить наклонение, начнем разгоняться на юго-восток, получившаяся орбита будет иметь также большее наклонение, чем наша широта. Почему? Посмотрите на картинку: при разгоне строго на восток самой северной точкой проекции орбиты (синяя линия) будет наш космодром. А если мы будем разгоняться на юго-восток, то самая северная точка проекции получившейся орбиты будет севернее нашего космодрома, и наклонение орбиты окажется больше широты космодрома:

Вывод: при запуске космического аппарата начальное наклонение его орбиты не может быть меньше широты космодрома.

Для того, чтобы выйти на геостационарную орбиту (наклонение 0°) нужно обнулить наклонение, но на это требуется дополнительное топливо (физика этого процесса - ). Космодром Байконур имеет широту 45°, а, учитывая, что отработанные ракетные ступени не должны падать в Китай, ракеты запускаются на северо-восток на трассы с наклонением 65° и 51,6°. В результате, четырехступенчатая ракета-носитель 8К78, которая запускала к Луне полторы тонны, а к Марсу - почти тонну, на геостационарную орбиту смогла бы вывести всего ~100 кг. Уместить в такую массу полноценный геостационарный спутник связи в начале 60-х годов не могла ни одна страна. Надо было придумывать что-то другое. На помощь пришла орбитальная механика. Чем больше высота спутника, тем медленнее относительно Земли он движется. На высоте 36 000 км над экватором спутник будет постоянно висеть над одной точкой Земли (на этой идее и работает геостационарная орбита). А если мы выведем спутник на орбиту, которая представляет собой вытянутый эллипс, то его скорость будет очень сильно меняться. В перицентре (самая близкая к Земле точка орбиты) он будет лететь очень быстро, а вот в районе апоцентра (самая удаленная от Земли точка орбиты) будет на несколько часов практически зависать на месте. Если отметить точками путь спутника с интервалом один час, получится следующая картина:

Кроме почти неподвижности, на большой высоте спутник будет видеть обширный участок нашей планеты и сможет обеспечивать связь между удаленными пунктами. Большое наклонение орбиты будет означать, что даже в Арктике с приемом сигнала не будет проблем. А если выбрать наклонение близкое к 63,4°, то гравитационные помехи от Земли будут минимальными, и на орбите можно будет находиться практически без коррекции. Так родилась орбита "Молния" с параметрами:


  1. Перицентр: 500 км

  2. Апоцентр: 40 000 км

  3. Наклонение: 62,8°

  4. Период обращения: 12 часов

Если бы мы находились на спутнике, летящем по такой орбите, то видели бы Землю так:

Воплощение в железе

На высокоэллиптическую орбиту ракета 8К78 могла вывести целых 1600 кг. Для разработчиков это было счастье - можно было сделать мощный спутник с большими возможностями и параллельно "утереть нос" американцам, спутники связи которых не превышали по массе 300 кг. Получившийся аппарат впечатлял своими характеристиками:

В состав оборудования спутника входило три ретранслятора мощностью 40 Вт и два резервных мощностью 20 Вт, а электричество для них вырабатывали солнечные батареи суммарной мощностью в полтора киловатта. Для приема и передачи данных использовались две управляемые параболические антенны диаметром 1,4 метра. Аппаратом управляло транзисторное программно-временное устройство, предок современных компьютеров, а ориентацию поддерживал уникальный трехстепенной силовой гироско п. Система управления реализовывала сложные алгоритмы полетных режимов с трехосной ориентацией. На рабочем участке аппарат поддерживал постоянную ориентацию солнечными батареями на Солнце, сопровождая Землю управляемыми основными антеннами. Завершив рабочий участок, аппарат поворачивался по данным инфракрасной вертикали до тех пор, пока не занимал положение, параллельное вектору орбитальной скорости в перицентре. В районе перицентра, по хранящимся в памяти командам, он мог совершать коррекцию орбиты.


Вид сверху, хорошо виден конус двигательной установки и шар-баллоны сжатого азота для системы ориентации


Вид снизу, видны солнечные батареи, блок датчиков на торце и антенны

Предполагалось, что срок активного существования аппарата превысит один год, цифра, по тем временам, фантастическая. Аппарат получил название "Молния", и, забегая вперед, скажем, что он оказался настолько эпохальным, что и орбиту и ракету-носитель 8К78 назвали в его честь.

Эксплуатация


Ракета-носитель "Молния-М", потомок РН "Молния"

В то время начало эксплуатации не могло быть легким. 4 июня 1964 года первая "Молния" не долетела до орбиты из-за аварии ракеты-носителя. 22 августа 1964 года второй аппарат был успешно выведен на близкую к расчетной орбиту. Но вот беда - обе основные антенны, которые должны были дублировать друг друга, не раскрылись. Расследование установило, что во время испытаний на одной из антенн было обнаружено повреждение изоляции кабеля, и штанги антенн, по решению конструктора, обмотали дополнительно хлорвиниловой лентой. В космосе в тени солнечных батарей лента замерзла, и пружины, которые и так с трудом раскрывали антенны, не смогли пересилить смерзшийся пластик. Вторая "Молния" была потеряна. На будущее проблему было легко исправить, пружины на антенных штангах заменили на электродвигатели, которые гарантированно полностью раскрывали антенны. Наконец, 23 апреля 1965 года третья "Молния" была успешно запущена и оказалась полностью работоспособной. Был нервный момент, когда главное реле не захотело включаться с первого раза, но, после нескольких томительных минут непрерывной отправки с Земли команд на включение ретранслятора, он все-таки включился. Между Москвой и Владивостоком установилась связь через первый советский спутник-ретранслятор:


Первые телевизионные кадры, переданные при помощи "Молнии"

Большая мощность сигнала означала, что для его приема не нужны большие антенны, по стране стали строить сравнительно небольшие павильоны "Орбита":

Сетью станций спутникового вещания была быстро покрыта северная и восточная часть СССР:

А спутниковое телевидение из технического чуда быстро стало обыденностью, председатель крайкома на Дальнем Востоке сразу заявил, что в случае проблем с трансляцией передач будет жаловаться лично Брежневу. К 1984 году количество станций "Орбита" превысило сотню, сделав советское спутниковое ТВ доступным даже в небольших городах. Станции ретранслировали московский сигнал на местный телецентр, который, уже, в свою очередь, обслуживал значительный район.

Первые спутники "Молния" не смогли перешагнуть рубеж срока существования в один год. Из-за того, что спутник каждые сутки четыре раза пролетал через радиационные пояса, солнечные батареи стали быстро деградировать. Первая "Молния" смогла прожить с апреля по ноябрь. В конструкцию спутника добавили резервные солнечные панели, которые раскрывались при необходимости после деградации основных. Уже "Молния" №7 смогла активно существовать с октября 1966 по январь 1968. Для советских спутников это был очень большой срок.

"Молнии" разрабатывали в ОКБ С.П. Королева, а уже в 1965 году производство стали передавать в Красноярск "филиалу №2" под руководством Михаила Решетнева. С этого началась славная история предприятия, известного сейчас как АО ИСС им. академика Решетнева. Аппараты "Молния" активно развивались. Параболическая антенна была заменена на четырехспиральную:

Интересные кадры испытаний и рассказ о четырехспиральной антенне:


Дополнительные солнечные панели

Аппараты перешли на сантиметровый диапазон волн, научились вещать не на всю страну, а на отдельные временные зоны, постоянно возрастало количество каналов связи и их пропускная способность. Со временем "Молнии" перестали использоваться для гражданского телевещания и стали, в основном, спутниками военной связи. Последний аппарат семейства "Молния", "Молния-3К" был запущен в 2001 году.

Сегодня и завтра

Гражданское ТВ-вещание в СССР/России со временем перешло на геостационарную орбиту. Появилась более грузоподъемная ракета-носитель "Протон", которая начала выводить спутники на геостационар с 1975 года. Павильон "Орбиты" требовал двенадцатиметровую подвижную антенну и проигрывал спутниковым "тарелкам", которые сейчас встречаются повсеместно. Спутники "Молния" закончили свою жизнь. Но орбита "Молния" не умерла. Она востребована для наших высоких широт, и сейчас по ней летают спутники связи "Меридиан", с 2012 года идет разработка метеорологической системы "Арктика" . Уникальные свойства орбиты используются и за океаном - американский военный спутник NROL-35, предположительно относящийся к спутникам системы предупреждения о ракетном нападении и запущенный в декабре 2014 года, был выведен именно на орбиту "Молния". Кто знает, может быть, молния в руках у девушки на эмблеме миссии - намек на название орбиты?

Вариант орбиты "Молния", орбита "Тундра" с апоцентром 46-52 тысячи километров и периодом обращения в одни сутки, используется тремя спутниками радиосвязи Sirius XM и японской навигационной системой QZSS.

В будущем орбита "Молния" не будет забыта. Геостационарная орбита перегружена, как вариант, спутники могут начать уходить на высокоэллиптические орбиты. И даже за пределами Земли изобретению советских баллистиков может найтись применение: в проекте пилотируемой миссии на Марс HERRO для управления в реальном времени роботами на поверхности предлагается использовать аналог орбиты "Молния".

Колебания формы орбиты и оси Земли и оледенения в олигоцене и миоцене


Тогда что они собой представляли? Ответ на этот вопрос неожиданно был получен после изучения палеогеновых и неогеновых отложений Антарктиды и Китая.
По результатам исследований Габриэля Боуэна, Роберта Деконто из Массачусетского университета и Девида Полларда (David Pollard) из Пенсильванского университета формирование ледяного щита в Антарктике после эоцен-олигоценовой катастрофы (34 млн. лет назад) происходило в два этапа. О бъем льда резко увеличивался в первые 40-50 тысяч лет олигоценовой эпохи , затем была эпоха потепления длительностью около 100 тысяч лет, за которой последовал второй 40-50 тысячелетний этап нарастания ледяного щита.
С такой же 100-тысячелетней периодичностью с начала олигоцена появлялись и исчезали озера в Тибете, что засвидетельствовали Гиллом Дюпонт-Нивет (Guillaume Dupont Nivet) и его коллеги из Нидерландов и Китая По их мнению, причиной этого события было периодическое изменение наклона земной оси по отношению к плоскости эклиптики (орбиты) и формы орбиты Земли от круговой до эллиптической – аналогичное четвертичным.
По данным Жетанга Гуо и его коллег из Китайской Академии наук, после олигоцен-миоценовой катастрофы , около 24 (23) млн. лет назад, возникли Великие Азиатские пустыни к северу от Тибетского плато. Это подтверждается накоплением 231 слоя древней коричневатой, нанесенной ветром, пыли, называемой лёссом. Лёсс откладывался в период с 24-22 до 6,2 млн. лет назад между слоями красной глины. Примечательно, что каждый такой слой формировался на протяжении около 65 тысяч лет.

Основная причина раскачивания Земли - глобальные катастрофы


Таким образом, мы имеем три однотипных случая. Глобальные катастрофы на рубеже эоцена и олигоцена , олигоцена и миоцена и плейстоцена и голоцена , которые сопровождались смещением земной оси на 15-30 град., землетрясениями и вулканическими извержениями по всей земле, потопами , оледенениями и резкой сменой видового разнообразия фауны и флоры.

На рубеже эоцена и олигоцена вымерли древние киты (Archeoceti), диноцераты, большинство титанотериев (бронтотериев) и креодонтов. На рубеже палеогенового и неогенового периодов вымерли гигантские индрикотерии и титанотерии. На рубеже плейстоцена и голоцена вымерли мамонта и шерстистые носороги.

После этих катастроф наряду с резким глобальным изменением климата (и , и ) начиналось периодическое чуть менее отчетливое изменение климата и отложение специфических отложений, связанных с повторяющимся изменением наклона земной оси к плоскости эклиптики и формы орбиты Земли (?) То есть,
Земля приобретала колебательные движения, которые проявлялись в раскачивании ее оси (раскачивании планеты вокруг условной прямой линии к плоскости ее орбиты) и колебании планеты на орбите .
Причиной таких колебательных движений Земли были глобальные катастрофы , которые были связаны со столкновениями с планетой астероидов, пролетами возле нее каких-то других планет или небесных тел, либо ядерными войнами богов и демонов , обладавших сверхмощным оружием (и здесь).
Как бы в подтверждение этому в «Махабхарате» говорится о том, что гигантский змей Шешу обвил Землю своими кольцами, чтобы спасти ее от чрезмерного раскачивания.

Читайте мои работы о катастрофах палеогенового, неогенового и четвертичного периодов, изменении положения земной оси и климата на Земле в разделах "Великие катастрофы ", "Мир в палеогене. Расцвет Гипербореи ", "Мир в олигоцене и неогене. Сокращение площади Гипербореи ", "Мир в плейстоцене. Великие оледенения и исход с Гипербореи "

Раздел "Великие катастрофы "

Приглашаю всех желающих для дальнейшего обсуждения данного материала на страницах


© А.В. Колтыпин, 20
11

Я, автор этой работы А.В. Колтыпин, разрешаю использовать ее для любых незапрещенных действующим законодательством целей при условии указания моего авторства и гиперссылки на сайт или