В чем смысл гипотезы ампера. Гипотеза ампера. гипотеза ампера- движение электронов в атомах и молекулах приводит к возникновению (существованию) элементарных токов, которые называют

Контрольная работа по теме « Электромагнитные явления» (8 класс.)

Вариант 1.

    Из перечисленных примеров укажите связанные с электромагнитными явлениями:

а) взаимодействие параллельных токов,

б) взаимодействие двух магнитов,

в) падение мяча к Земле,

г) скатывание шарика по наклонному желобу,

д) взаимодействие проводника с током и магнитной стрелки.

2. Два магнита обращены друг к другу северными полюсами. Как магниты будут взаимодействовать между собой?

а) Притягиваться. б) Отталкиваться. в) Не будут взаимодействовать. г) Среди ответов нет правильного.

3. При пропускании постоянного электрического тока через проводник вокруг него возникает магнитное поле. Оно обнаруживается по расположению стальных опилок на листе бумаги или магнитной стрелки, находящихся вблизи проводника.В каком случае это поле исчезает?

а) Если убрать стальные опилки. б) Если убрать магнитную стрелку. в) Если убрать стальные опилки и магнитную стрелку. г) Если отключить электрический ток в проводнике.

5 . В чем суть гипотезы Ампера? Как согласуется гипотеза Ампера с современными представлениями о строении вещества?

9 . У вас имеются три предмета – « прибора »:

1) постоянный магнит, 2) стальной ненамагниченный стержень, 3) медный стержень.

В трех « черных ящиках » находятся эти же три предмета. Какими приборами и в какой последовательности лучше воспользоваться, чтобы выяснить, что лежит в каждом из трех «черных ящиков» ?

10. Электродвигатель постоянного тока потребляет от источника с напряжением 42 В ток силой 3 А. Какова механическая мощность мотора, если сопротивление его обмотки равно 5 Ом? Каков его К.П.Д.?

Вариант 2.

    Что наблюдалось в опыте Эрстеда?

а) Взаимодействие двух параллельных проводников с током.

б) Взаимодействие двух магнитных стрелок.

в) Поворот магнитной стрелки вблизи проводника при пропускании через него тока.

г) Возникновение электрического тока в катушке при помещении в нее магнита.

2. Как взаимодействуют между собой два параллельных проводника, если по ним протекают токи в одном направлении?

а) Притягиваются. б) Отталкиваются. в) Сила взаимодействия равна нулю. г) Правильный ответ не приведен.

3. При пропускании постоянного электрического тока через проводник вокруг него возникает магнитное поле. Оно обнаруживается по расположению стальных опилок на листе бумаги или повороту магнитной стрелки, находящихся вблизи проводника.Каким образом это магнитное поле можно переместить в пространстве?

а) Переносом стальных опилок. б) Переносом магнита. в) Переносом проводника с током. г) Магнитное поле переместить невозможно.

4. Как расположатся магнитные стрелки, помещенные в точки А и В внутри катушки при размыкании ключа К?

а) Одинаково- северным полюсом вправо по рисунку.

б) Одинаково- северным полюсом влево по рисунку.

в) Стрелки северными полюсами обращены друг к другу.

г) Стрелки южными полюсами обращены друг к другу.

5. Почему устройство двигателей переменного тока проще, чем постоянного? Почему на транспорте используют моторы постоянного тока?

6. Определить полюса электромагнита.

7. Изобразить магнитное поле токов и определить направление силовых линий магнитного поля.

8. Определить направление силы, действующей на проводник с током, помещенный в магнитное поле.

9 . У вас имеются три предмета – « прибора »: деревянный брусок, два стальных гвоздя, не притягивающихся друг к другу, и постоянный магнит.

В трех « черных ящиках » находятся соответственно: магнит, два гвоздя и деревянный брусок. Какими приборами и в какой последовательности лучше воспользоваться, чтобы выяснить, что лежит в каждом из ящиков?

10. Электродвигатель постоянного тока потребляет от источника с напряжением 24 В ток силой 2 А. Какова механическая мощность мотора, если сопротивление его обмотки равно 3 Ом? Каков его К.П.Д.?

Открытия Эрстеда и Ампера привели к новому и более глубокому представлению о природе магнитных явлений. Опираясь на установленную в этих опытах тождественность магнитных действий магнитов и соответствующим образом подобранных токов, Ампер решительно отказался от представления о существовании в природе особых магнитных зарядов. С точки зрения Ампера, элементарный магнит – это круговой ток, циркулирующий внутри небольшой частицы вещества: атома, молекулы или группы их. При намагничивании большая или меньшая часть таких токов устанавливается параллельно друг другу, как показано на рис. 209 (амперовы токи).

Рис. 209. Упорядоченное расположение амперовых токов в намагниченном железе, помещенном в магнитном поле

Мы видели в § 115, что по своим магнитным свойствам круговой ток вполне подобен короткому магниту, ось которого перпендикулярна к плоскости тока. Поэтому изображенная условно на рис. 209 система ориентированных молекулярных токов совершенно равносильна цепочкам элементарных магнитиков в гипотезе Кулона.

Таким образом, теория Ампера сделала ненужным допущение о существовании особых магнитных зарядов, позволив объяснить все магнитные явления при помощи элементарных электрических токов. Дальнейшее более глубокое изучение свойств намагничивающихся тел показало не только, что гипотеза магнитных зарядов или элементарных магнитиков излишня, но что она неверна и не может быть согласована с некоторыми экспериментальными фактами. Мы позже познакомимся с этими фактами (§ 147).

С точки зрения теории Ампера становится совершенно понятной неотделимость друг от друга северных и южных полюсов, о которой мы говорили в предыдущем параграфе. Каждый элементарный магнит представляет собой круговой виток тока. Мы видели уже, что одна сторона этого витка соответствует северному, другая – южному полюсу. Именно поэтому нельзя отделить друг от друга северный и южный полюсы, как нельзя отделить одну сторону плоскости от другой.

Таким образом, мы пришли к следующему основному результату.

Никаких магнитных зарядов не существует. Каждый атом вещества можно рассматривать в отношении его магнитных свойств как круговой ток. Магнитное поле намагниченного тела слагается из магнитных полей этих круговых токов.

В ненамагниченном теле все элементарные токи расположены хаотически, и поэтому мы не наблюдаем во внешнем пространстве никакого магнитного поля.

Процесс намагничивания тела заключается в том, что под влиянием внешнего магнитного поля его элементарные токи в большей или меньшей степени устанавливаются параллельно друг другу и создают результирующее магнитное поле.

Значение теории Ампера не вызывало сомнения. Однако представления Ампера о существовании элементарных токов, непрерывно циркулирующих внутри частиц веществ, были чрезвычайно смелы и необычны для его времени. Дальнейшее развитие науки сделало эти представления естественным следствием созданной в XX веке теории атома. Атом представляет собой систему из центрального положительно заряженного ядра и электронов, обращающихся около него, подобно тому как планеты обращаются вокруг Солнца. Движение электронов представляет собой круговые токи, циркулирующие внутри атомов. Удалось даже осуществить специальные опыты, показывающие, что намагничивание тел сопровождается ориентировкой осей этих круговых токов, стремящихся расположиться параллельно.

Такие наглядные представления о строении атомов являются слишком грубыми и потому неточными, однако они в общих чертах правильно передают сущность дела.

Открытия Эрстеда и Ампера привели к новому и более глубокому представлению о природе магнитных явлений. Опираясь на установленную в этих опытах тождественность магнитных действий магнитов и соответствующим, образом подобранных токов, Ампер решительно отказался от представления о существовании в природе особых магнитных зарядов. С точки зрения Ампера, элементарный магнит - это круговой ток, циркулирующий внутри небольшой частицы вещества: атома, молекулы или группы их. При намагничивании большая или меньшая часть таких токов устанавливается параллельно друг другу, как показано на(амперовы токи).

Мы видели в, что по своим магнитным свойствам круговой ток вполне подобен короткому магниту, ось которого перпендикулярна к плоскости тока. Поэтому изображенная условно на рис. 209 система ориентированных молекулярных токов совершенно равносильна цепочкам элементарных магнитиков в гипотезе Кулона.

Таким образом, теория Ампера сделала ненужным допущение о существовании особых магнитных зарядов, позволив объяснить все магнитные явления при помощи элементарных электрических токов. Дальнейшее более глубокое изучение свойств намагничивающихся тел показало не только, что гипотеза магнитных зарядов или элементарных магнитиков излишня, но что она неверна и не может быть согласована с некоторыми экспериментальными фактами. Мы позже познакомимся с этими фактами. С точки зрения теории Ампера становится совершенно понятной неотделимость друг от друга северных и южных полюсов, о которой мы говорили в предыдущем параграфе. Каждый элементарный магнит представляет собой круговой виток тока. Мы видели уже, что одна сторона этого витка соответствует северному, другая - южному полюсу. Именно поэтому нельзя отделить друг от друга северный и южный полюсы, как нельзя отделить одну сторону плоскости от другой.

Таким образом, мы пришли к следующему основному результату.

Никаких магнитных зарядов не существует. Каждый атом вещества можно рассматривать в отношении его магнитных свойств как круговой ток. Магнитное поле намагниченного тела слагается из магнитных полей этих круговых токов.

В ненамагниченном теле все элементарные токи расположены хаотически, и поэтому мы не наблюдаем во внешнем пространстве никакого магнитного поля.

Процесс намагничивания тела заключается в том, что под влиянием внешнего магнитного поля его элементарные токи в большей или меньшей степени устанавливаются параллельно друг другу и создают результирующее магнитное поле.

Магни́тный моме́нт

Магни́тный моме́нт , магни́тный дипо́льный моме́нт - основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Магнитным моментом обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента - спина.

Магнитный момент измеряется в А⋅м 2 или Дж/Тл (СИ), либо эрг/Гс (СГС), 1 эрг/Гс = 10 -3 Дж/Тл. Специфической единицей элементарного магнитного момента является магнетон Бора.

В случае плоского контура с электрическим током магнитный момент вычисляется как

где I - сила тока в контуре, S - площадь контура, - единичный вектор нормали к плоскости контура. Направление магнитного момента обычно находится по правилу буравчика: если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика.

Для произвольного замкнутого контура магнитный момент находится из.




Для объяснения намагничения тел Ампер предположил, что в молекулах вещества циркулируют круговые токи (молекулярные токи). Каждый такой ток обладает магнитным моментом и создает в окружающем пространстве магнитное поле. В отсутствие внешнего поля молекулярные токи ориентированы беспорядочным образом, вследствие чего обусловленное ими результирующее поле равно нулю. В силу хаотической ориентации магнитных моментов отдельных молекул суммарный магнитный момент тела также равен нулю. Под действием поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, вследствие чего магнетик намагничивается – его суммарный магнитный момент становится отличным от нуля. Магнитные поля отдельных молекулярных токов в этом случае уже не компенсируют друг друга и возникает поле В


В начале исследования магнетизма для объяснения свойств постоянных магнитов Ампер выдвинул смелую по тем временам гипотезу о существовании так называемых "молекулярных токов", совокупность которых объясняет магнитные свойства вещества. В настоящее время гипотеза Ампера представляется чуть ли не очевидной, физические механизмы, ответственные за магнитные свойства веществ, изучены значительно более глубоко, чем это было возможно во времена Ампера