Очистка воздуха на промышленных предприятиях. Аппараты для очистки воздуха и газов от пыли. Использование нашего оборудования позволяет

Эффективность очистки от пыли на производстве

Эффективность очистки от пыли повышают путем последовательной установки пылеуловителей разного типа, например, сначала для улавливания грубой фракции пыли устанавливают циклон, а за ним матерчатый фильтр.


Большое распространение в последние годы получили мокрые пылеуловители. Один из наиболее распространенных аппаратов этого вида — ротоциклон, в котором газопылевая смесь под давлением, создаваемым вентилятором, вихревым потоком проходит через слой воды. Тяжелые частицы пыли задерживаются водой и осаждаются в нижнюю часть ротоциклона, откуда затем удаляются, а очищенный поток уходит в атмосферу. К аппаратам, в которых пыль улавливается с помощью воды, относятся скрубберы, промывные башни, пенные аппараты, пылеуловители Вентури, в том числе в компоновке с циклоном, и др.


Разновидностью мокрых пылеуловителей являются конденсационные установки, удаляющие пыль из потока газа, насыщенного водой. Принцип их действия основан на быстром снижении давления газа, приводящем к испарению воды. Вследствие этого часть водяного пара конденсируется на витающих пылинках, а последние, смачиваясь и утяжеляясь, могут быть легко отделены от газа в каком-либо простейшем устройстве, например циклоне.


Более эффективное улавливание пыли достигается в электрическом фильтре (сухой способ). Такие фильтры устанавливаются, например, в котельных для очистки дымовых газов от сажи, летучей золы — уноса. К коронирующим и осадительным электродам фильтров подводят постоянный ток высокого напряжения. Осадительные электроды присоединяют к положительному полюсу выпрямителей и заземляют, а коронирующие изолируют от земли и присоединяют к отрицательному полюсу.


Очищаемый поток газов проходит через пространство между электродами и основная масса взвешенных частиц, заряжающихся под действием коронного разряда (сопровождается голубоватым свечением и потрескиванием), оседает на осадительных электродах. Путем встряхивания пыль удаляется в бункер, жидкая фаза загрязнений стекает.


Полное удаление пыли из загрязненного потока воздуха происходит в бумажных (сухих) фильтрах-поглотителях конструкции академика Петракова, изготовляемых из особого мягкого листового материала типа бумаги. Эти фильтры устанавливают в респираторы для улавливания радиоактивной пыли при работе в зонах с повышенной радиацией. После использования они, как и радиоактивные смывы грунта, подлежат захоронению.

1 — загрязненный поток, 2 — осадительный (цилиндрический) электрод, 3 — коронирующий электрод 4 — очищенный поток, 5 — взвесь, +U, —U — электрический потенциал соответственно положительного и отрицательного зарядов


Для очистки технологических и вентиляционных выбросов от вредных газов применяют адсорберы и абсорберы. В адсорбере очищаемый поток пронизывает слой адсорбента, состоящего из зернистого вещества с развитой поверхностью, например, активированного угля, силикагеля, окиси алюминия, пиролюзита и т.п. При этом вредные вещества (газы и пары) связываются адсорбентом и впоследствии могут быть выделены из него. Имеются адсорберы с неподвижным слоем адсорбента, который обновляется после насыщения улавливаемым веществом, а также адсорберы непрерывного действия, в которых адсорбент медленно перемещается и одновременно очищает проходящий через него поток.

1 — сетка, 2 — адсорбент, 3 — счищенный поток, 4 — загрязненный поток


1 — адсорбент, 2 — очищаемый поток, 3 — насадка, 4 — сетка, 5 — загрязненный поток, 6 — выброс в канализацию


Промышленность выпускает также адсорберы с псевдоожиженным (кипящим) слоем, в которых очищаемый поток подается снизу вверх с большой скоростью и поддерживает слой адсорбента во взвешенном состоянии. Площадь соприкосновения очищаемого потока с поверхностью адсорбента при этом значительно увеличивается, но могут произойти истирание адсорбента и запыление очищаемого потока, поэтому за адсорбентом в ряде случаев приходится устанавливать пылевой фильтр.


В абсорбере для очистки от газов применяют, как правило, жидкие вещества, например воду или растворы солей (абсорбенты), поглощающие вредные газы и пары. При этом одни вредные вещества растворяются абсорбентом, другие — вступают с ним в реакцию. Конструкции абсорберов весьма разнообразны. В качестве абсорберов могут применяться распылительные камеры кондиционеров, в которых вместо воды разбрызгивается поглощающий примеси раствор, а также уже упоминавшиеся барботеры, ротоциклоны, пенные аппараты, пылеуловители Вентури и другое оборудование очистки от пыли мокрым способом.


Распространенным способом очистки газов и органических соединений от газообразных вредных веществ, в том числе обладающих неприятном запахом, является дожигание, возможное в тех случаях, когда вредные вещества способны к окислению. Если концентрация примесей в газах постоянна и превышает пределы воспламенения, применяют наиболее простое устройстве — дожигающие газовые горелки. При низких концентрациях вредных веществ, не достигающих предела воспламенения, используют каталитическое окисление. В присутствии катализатора (какого-либо металла или его соединений, например, платины) происходит экзотермическое окисление органических соединений при температурах значительно ниже предела воспламенения.


Для дезодорации неприятно пахнущих веществ применяют озонирование — метод, основанный на окислительном разложении образующих неприятный запах веществ и нейтрализации запаха (применяется, например, на предприятиях мясной промышленности).


Далеко не все предприятия работают по безотходной технологии и не для всех выбросов разработаны системы очистки. Поэтому применяются выбросы загрязняющих веществ на большую высоту. При этом вредные вещества, достигая приземного пространства, рассеиваются и их концентрация снижается до предельно допустимых значений. Некоторые вредные вещества на большой высоте переходят в иное состояние (конденсируются, вступают в реакции с другими веществами и т.д.), а такие, как ртуть, осаждаются на поверхности земли, листьев, строениях и при повышении температуры снова испаряются в воздухе.


Отведение загрязняющих веществ на большую высоту осуществляется, как правило, с помощью труб, которые в отдельных случаях достигают высоты более 350 м.


Расчет рассеивания производят по нормативному документу ОНД-86 «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий». На основе этой методики разработаны компьютерные программы, успешно применяемые в промышленности.


Расчет рассеивания осуществляется только для организованных выбросов. В результате расчета определяется максимальная приземная концентрация вредных веществ выброса (мг/м3) в интересующей проектировщика точке (точках), которая должна быть не более ПДК с учетом фоновой концентрации, образуемой другими выбросами.


Для отведения выбросов на большую высоту используют не только высокие трубы, но и так называемые факельные выбросы, представляющие собой конические насадки на выхлопном отверстии, через которые загрязненные газы выбрасываются вентилятором с большой скоростью (20—30 м/с). Применение факельных выбросов уменьшает единовременные затраты, но вызывает большой расход электроэнергии при эксплуатации.


Отведение вредных веществ на большую высоту с помощью высоких труб и факельных выбросов не уменьшает загрязнения окружающей среды (воздуха, почв, гидросферы), а приводит лишь к их рассеиванию. При этом концентрация вредных веществ в воздушной среде недалеко от места их выброса может оказаться меньше, чем на большом расстоянии.


Для уменьшения концентрации вредных веществ на прилегающей к промышленному предприятию территории устраивают санитарно-защитные зоны.


Они предназначены также для защиты селитебных территорий от запахов сильно пахнущих веществ, повышенных уровней шума, вибрации, ультразвука, электромагнитных волн, радиочастот, статического электричества и ионизирующих излучений, источниками которых могут быть промышленные предприятия.


Санитарно-защитная зона начинается непосредственно от источника выделения вредных веществ: трубы, шахты и т.д. Для установления размеров санитарно-защитных зон в зависимости от характера и масштабов производственных вредностей введена санитарная классификация промышленных предприятий:

  1. предприятия I класса имеют санитарно-защитную зону 1000 м (клееварочные заводы, производство технического желатина, утильзаводы по переработке падали животных, рыб и т.д.);
  2. II класса — 500м (костемельные заводы, бойни, мясокомбинаты и т.д.);
  3. III класса — 300 м (производство кормовых дрожжей, предприятия свеклосахарные, рыбные промыслы и т.д.);
  4. IV класса — 100 м (солеваренное и солеразмольное производство, производство парфюмерии, производство изделий из синтетических смол, полимерных материалов и т.д.);
  5. V класса — 50 м (механическая обработка изделий из пластмасс и синтетических смол, производство столового уксуса, заводы спиртоводочные, предприятия табачно-махорочные, хлебозаводы, макаронные фабрики, молочное производство и многие другие предприятия).

Территорию санитарно-защитной зоны озеленяют и благоустраивают. На ней могут быть размешены отдельные сооружения, предприятия меньшего класса вредности, а также вспомогательные здания (пожарные депо, бани, прачечные и т.п.). Возможность использования земель, отводимых под санитарно-защитные зоны, для сельскохозяйственного производства зависит от количества и характера загрязнений, которые на них попадают.


Для улучшения состояния воздушной среды на селитебной территории большое значение имеет взаимное расположение промышленной площадки и селитебной территории, учитывающее климатические условия, в частности преобладающее направление ветров. Промышленные предприятия и селитебные территории следует располагать на хорошо проветриваемом месте, причем таким образом, чтобы при господствующем ветре выделяющиеся вредные вещества не заносились на селитебную территорию.


Для предприятий атомной промышленности и ядерной энергетики и для соответствующих объектов в составе промышленного предприятия санитарно-защитная зона устанавливается специальными нормативными актами.


Для очистки наружного воздуха, подаваемого приточной вентиляцией в производственные помещения (концентрация вредных веществ в нем не должна превышать 0,3 ПДК для внутреннего воздуха рабочей зоны) в приточных вентиляционных камерах устанавливают фильтры. Применяют масляные фильтры, фильтры из нетканого волокна и другие виды устройств, очищающих поступающий воздух от пыли и газов.


Контроль концентраций вредных примесей воздушной среды сводится к следующим операциям: отбор проб воздуха, подготовка проб к анализу, анализ и обработка результатов.


Самым простым и распространенным способом накопления (отбора) газовой или пылевой пробы является протягивание воздуха воздуходувными устройствами (аспиратор, эффектор, насос) с определенной скоростью, регистрируемой расходомерным устройством (реометр, ротаметр, газовые часы), через накопительные элементы, обладающие необходимой поглотительной способностью.


Для экспрессного метода определения характеристик токсичных веществ используют универсальные газоанализаторы упрощенного типа (УГ-2, ПГФ.2М1-МЗ, ГУ-4 и др.).


Выбор метода анализа загрязненного воздуха определяется природой примесей, а также ожидаемой концентрацией и целью анализа.

Безопасность труда имеет большое значение в организации производственного процесса, именно поэтому крупные предприятия и небольшие организации уделяют особое внимание очистке воздуха от пыли на производстве. Предотвратить ее накопление, обеспечить благоприятные и безопасные условия труда позволяют очистительные установки.

Качественная очистка воздуха включает себя условия, которые напрямую связаны с влажностью и температурой испарений, продуктов горения, степенью агрессивности и объемом газа, а также уровнем скопления пыли и климатическими условиями. Негативное влияние пылевых частиц на организм человека – одна из важнейших причин для установки очистителей воздуха на производстве. Кроме того, это поможет сохранить оборудование от частых поломок.

Оборудование для промышленно очистки воздуха от пыли

Современный рынок насыщен предложениями, которые помогают установить специализированное оборудование для крупных предприятий и маленьких производственных цехов. У системы очистки воздуха есть несколько уровней: глубокая, средняя и тонкая. Каждая из них позволяет обезвредить микрочастицы любого размера.

Очистка воздуха от пыли с целью уменьшения содержания в нем пылевых частиц - сложная, но необходимая в современных условиях задача. Решение этой задачи зависит прежде всего от правильного выбора системы пылеочистки и квалифицированной эксплуатации пылеочистных устройств.

Многие производственные технологические процессы приводят к выбросу в воздух мелких твердых частиц или пыли. Пыль образуется в процессе измельчения, шлифовки, полировки, истирания, а также при транспортировке или пересыпании различных материалов.

Зачем нужна очистка от пыли

Воздух, удаляемый местными вентиляционными , запыленный или загрязненный ядовитыми газами или парами, необходимо очищать перед выпуском его в атмосферу. Способ очистки удаляемого воздуха от загрязнений, высота выброса и допустимые концентрации вредных веществ в нем должны соответствовать действующим нормативным документам и стандартам. Если от ядовитых газов и паров технически невыполнима, то неочищенный воздух необходимо выбрасывать в высокие слои атмосферы.

Сегодня в нашей стране на многих действующих производствах существующие системы аспирации (пылеудаления) и вентиляции не справляются с задачами пылеудаления или делают это с недостаточным качеством. В основном, это происходит:

Чтобы довести содержание пыли в удаляемом из производственных помещений воздухе до уровня, соответствующего действующим санитарным нормам, используются пылеочистные или газоочистные устройства.


Выбор пылеочистного устройства

Пылеочистное устройство выбирают в зависимости от ряда параметров, к числу которых относят: степень требуемой очистки воздуха, величину пылинок, свойства частиц пыли (пыль сухая, волокнистая, липкая, гигроскопичная и т.д.), начальное пылесодержание, а также температуру очищаемого воздуха и ценность частиц пыли.

Пылеочистные устройства делятся на:

  • устройства грубой очистки воздуха,
  • устройства очистки воздуха средней степени,
  • устройства очистки воздуха тонкой степени.

Дмитрий Захаров, Генеральный директор

«Рукавные фильтры не очищают от газовой составляющей, только от пыли.
Рукавные фильтры работают с температурой не более 250°С на входе в фильтр. При более высоких температурах требуется охлаждение газов или применение электрофильтров, которые имеют более низкую эффективность очистки по сравнению с рукавными (в 2 и более раз)».

Чтобы эффективно удалить пыль, следует знать ее классификацию. По размеру частиц (дисперсности) бывает:

  • мелкая пыль (частицы менее 100 мкм в диаметре);
  • средняя пыль (частицы более 100 мкм, но менее 200 мкм);
  • крупная пыль (частицы более 200 мкм).

Устройства грубой очистки воздуха применяют чаще всего на стадии предварительной очистки при многоступенчатой очистке воздуха. Они задерживают главным образом частицы крупной пыли.

Устройства средней степени очистки воздуха находят свое использование в тех случаях, когда воздух выбрасывается в атмосферу, при этом остаточное содержание пыли в нем должно быть не более 150 мг/куб. м.


Устройства тонкой степени очистки воздуха применяются для обеспечения остаточного пылесодержания очищенного воздуха на уровне не более 2 мг/куб. м. Они могут задержать пылевые частицы величиной до 10 мкм. Такие устройства следует использовать как для очистки приточного, так и рециркуляционного воздуха, а также для улавливания ценной пыли (например, частиц цветных металлов, муки, цемента и т.п.).

Виды пылеочистных устройств

По принципу действия различают следующие виды пылеочистных устройств:

  • Механического типа:
    • Сухие:
      • Гравитационные,
      • Инерционные,
      • Центробежные,
      • Вихревые,
    • Мокрые (скрубберы):
      • Капельные,
      • Пленочные,
      • Барботажные.
  • Электрического типа:
    • Сухие горизонтальные,
    • Сухие вертикальные,
    • Мокрые,
    • Двузонные.

К инерционным очистным устройствам относятся пылеосадительные камеры, в которых частицы загрязнения удаляются из потока газа под действием инерционных сил. Центробежные пылеотделители - это циклоны, мультициклоны и другие аппараты, работа которых основана на использовании сил инерции, выделении частиц пыли при изменении направления потока очищаемого газа.


Одним из самых эффективных мокрых пылеуловителей является скруббер Вентури, в котором турбулентный поток загрязненного газа пропускают через воду. При этом происходит захват каплями воды частиц пыли, коагуляции (слипание в более крупные комья) этих частиц с последующим осаждением в каплеуловителе инерционного типа.

В фильтрующих устройствах улавливание частиц пыли происходит при прохождении газа через пористые материалы. Различают тканевые (к ним относятся каркасные и рукавные фильтры), волокнистые (ячейковые, панельные, рукавные) и зернистые (ячейковые, барабанные) .

В мокрых электрофильтрах вода подается в виде пленки на осадительные электроды. Применение пылеулавливающих устройств мокрой очистки ограничивается теми случаями, когда допустимо увлажнение очищаемого газа.

Небольшая подсказка . Для эффективной очистки от пыли с размерами частиц до 4 мкм применяют главным образом рукавные фильтры и электрофильтры. Если размеры частиц лежат в диапазоне 4-8 мкм, то для очистки лучше применять циклоны с мокрой пленкой или скрубберы. Циклоны чаще всего используются для очистки от пыли с размерами частиц более 8 мкм.

Расчет степени очистки воздуха пылеочистным устройством

Существует формула, по которой можно рассчитать эффективность устройств пылеочистки. Эффективность характеризует, насколько устройство способно очистить воздух и измеряется в процентах:

N 0 = ((A 1 - A 2)/A 1)*100%,

  • N 0 - степень (эффективность) очистки воздуха,
  • A 1 - концентрация пыли в воздухе после очистки,
  • A 2 - концентрация пыли в воздухе до очистки.

При многоступенчатой очистке воздуха используют специальную формулу, в которой учитывается эффективность очистки на каждой ступени. К примеру, для двухступенчатой очистки эта формула такова:

N 0 = N 1 + N 2 - N 1 *N 2 ,

  • N 0 - общая степень (эффективность) очистки воздуха,
  • N 1 - степень (эффективность) очистки воздуха на первой ступени,
  • N 2 - степень (эффективность) очистки воздуха на второй ступени.


Чтобы сравнить эффективность разных пылеочистных устройств, пользуются такой формулой:

N = (100% - N 1) / (100% - N 2),

  • N - сравнительная степень (эффективность) очистки воздуха,
  • N 1 - степень (эффективность) очистки воздуха первого устройства,
  • N 2 - степень (эффективность) очистки воздуха на второго устройства.

Пусть N 1 = 90%, а N 2 = 95%. Воспользуемся формулой и получим, что эффективность второго устройства в 2 раза превышает степень очистки первого. А не на 5%, как думают некоторые.


На заметку

«Для эффективной очистки от пыли с размерами частиц до 4 мкм применяют главным образом рукавные фильтры и электрофильтры. Если размеры частиц лежат в диапазоне 4-8 мкм, то для очистки лучше применять циклоны с мокрой пленкой или скрубберы. Циклоны чаще всего используются для очистки от пыли с размерами частиц более 8 мкм».

Если нужно рассчитать эффективность очистки для каждой фракции пыли, то концентрация измеряется только по исследуемой фракции. Но поскольку частицы пыли имеют разнообразную форму (шарики, палочки, пластинки, иглы, волокна и т.д.), то для них понятие размера условно. В общем случае принято характеризовать размер частицы величиной, определяющей скорость ее осаждения, - седиментационным диаметром. Т.е. фактически приводят частицы неправильной формы к некоему абстрактному шару, скорость осаждения и плотность которого равны скорости осаждения и плотности исследуемых частиц, а потом определяют диаметр этого шара и пользуются им для отнесения частиц к той или иной фракции.

Другие значимые характеристики пылеочистных устройств

Помимо эффективности очистки, при выборе пылеочистных устройств нужно учитывать и другие их характеристики. К их числу относят:

  • производительность устройства (единица измерения - куб. м/ч);
  • стоимость очистки воздуха (руб.);
  • энергоемкость , измеряется как расход электроэнергии, требуемый на очистку 1000 куб. м воздуха (кВт*ч);
  • скорость фильтрации (куб. м/кв. м);
  • аэродинамическое сопротивление (Па);
  • пылеёмкость (измеряется только для матерчатых и пористых фильтров), - количество пыли, повышающее сопротивление фильтра до определенной пороговой величины (г или кг).

Последние три показателя характеризуют главным образом фильтрующие устройства. Скорость фильтрации (ее еще называют нагрузкой по газу) рассчитывается, как отношение объемного расхода очищаемого газа к площади фильтрующей поверхности. Аэродинамическое сопротивление определяется как разность давлений газа на входе и на выходе в очистное устройство. А пылеёмкость равна массе пыли, которая накапливается на фильтре в промежутке между очередными процессами регенерации. Регенерацию фильтра следует проводить, когда аэродинамическое сопротивление очистного устройства возрастает в 2-3 раза от начального уровня.

В публикации использованы информационные материалы компании .

Очистку газообразных выбросов от пыли или тумана на практике осуществляют в различных по конструкции аппаратах , которые можно разделить на четыре основные группы:

1. механические пылеуловители (пылеотстойные или пылеосадочные камеры, инерционные пыле- и брызгоуловители, циклоны и мультициклоны). Аппараты этой группы применяют обычно для предварительной очистки газов;

2. мокрые пылеуловители (полые, насадочные или барботажцые скрубберы, пенные аппараты, трубы Вентури и др.). Эти устройства более эффективны, чем сухие пылеуловители;

3. фильтры (волокнистые, ячейковые, с насыпными слоями зернистого материала, масляные и др.). Наиболее распространены рукавные фильтры;

4. электрофильтры – аппараты тонкой очистки газов–улавливают частицы размером от 0,01 мкм.

Методы очистки. Одной из актуальных проблем на сегодняшний день является очистка воздуха от различного рода загрязнителей. Как раз от их физико-химических свойств необходимо исходить при выборе того или иного метода очистки. Рассмотрим основные современные способы удаления загрязняющих веществ из воздушной среды.

Механическая очистка

Сущность данного метода заключается в механической фильтрации частиц при прохождении воздуха через специальные материалы, поры которых способны пропускать воздушный поток, но при этом удерживать загрязнителя. От размера пор, ячеек фильтрующего материала зависит скорость и эффективность фильтрации. Чем больше размер, тем быстрее протекает процесс очистки, но эффективность его ниже при этом. Следовательно, перед выбором данного метода очистки необходимо изучить дисперсность загрязняющих веществ среды, в которой он будет применяться. Это позволит производить очистку в пределах требуемой степени эффективности и за минимальный период времени.

Абсорбционный метод. Абсорбция представляет собой процесс растворения газообразного компонента в жидком растворителе. Абсорбционные системы разделяют на водные и неводные. Во втором случае применяют обычно малолетучие органические жидкости. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. Схемы с однократным использованием поглотителя применяют в тех случаях, когда абсорбция приводит непосредственно к получению готового продукта или полупродукта.

В качестве примеров можно назвать:

· получение минеральных кислот (абсорбция SO3 в производстве серной кислоты, абсорбция оксидов азота в производстве азотной кислоты);

· получение солей (абсорбция оксидов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция водными растворами извести или известняка с получением сульфата кальция);


· других веществ (абсорбция NH3 водой для получения аммиачной воды и др.).

Схемы с многократным использованием поглотителя (циклические процессы) распространены шире. Их применяют для улавливания углеводородов, очистки от SO2 дымовых газов ТЭС, очистки вентгазов от сероводорода железно-содовым методом с получением элементарной серы, моноэтаноламиновой очистки газов от CO2 в азотной промышленности.

В зависимости от способа создания поверхности соприкосновения фаз различают поверхностные, барботажные и распыливающие абсорбционные аппараты.

· В первой группе аппаратов поверхностью контакта между фазами является зеркало жидкости или поверхность текучей пленки жидкости. Сюда же относят насадочные абсорбенты, в которых жидкость стекает по поверхности загруженной в них насадки из тел различной формы.

· Во второй группе абсорбентов поверхность контакта увеличивается благодаря распределению потоков газа в жидкость в виде пузырьков и струй. Барботаж осуществляют путем пропускания газа через заполненный жидкостью аппарат либо в аппаратах колонного типа с тарелками различной формы.

· В третьей группе поверхность контакта создается путем распыления жидкости в массе газа. Поверхность контакта и эффективность процесса в целом определяется дисперсностью распыленной жидкости.

Наибольшее распространение получили насадочные (поверхностные) и барботажные тарельчатые абсорберы. Для эффективного применения водных абсорбционных сред удаляемый компонент должен хорошо растворяться в абсорбционной среде и часто химически взаимодействовать с водой, как, например, при очистке газов от HCl, HF, NH3, NO2. Для абсорбции газов с меньшей растворимостью (SO2, Cl2, H2S) используют щелочные растворы на основе NaOH или Ca(OH)2. Добавки химических реагентов во многих случаях увеличивают эффективность абсорбции благодаря протеканию химических реакций в пленке. Для очистки газов от углеводородов этот метод на практике используют значительно реже, что обусловлено, прежде всего, высокой стоимостью абсорбентов. Общими недостатками абсорбционных методов является образование жидких стоков и громоздкость аппаратурного оформления.

Электрический метод очистки. Данный метод применим для мелкодисперсных частиц. В электрических фильтрах создается электрическое поле, при прохождении через которое частица заряжается и осаждается на электроде. Основными преимуществами данного метода является его высокая эффективность, простота конструкции, легкость в эксплуатации – нет необходимости в периодической замене элементов очистки.

Адсорбционный метод. Основан на химической очистке от газообразных загрязнителей. Воздух контактирует с поверхностью активированного угля, в процессе чего загрязняющие вещества осаждаются на ней. Данный метод в основном применим при удалении неприятных запахов и вредных веществ. Минусом является необходимость систематической замены фильтрующего элемента.

Можно выделить следующие основные способы осуществления процессов адсорбционной очистки:

· После адсорбции проводят десорбцию и извлекают уловленные компоненты для повторного использования. Таким способом улавливают различные растворители, сероуглерод в производстве искусственных волокон и ряд других примесей.

· После адсорбции примеси не утилизируют, а подвергают термическому или каталитическому дожиганию. Этот способ применяют для очистки отходящих газов химико-фармацевтических и лакокрасочных предприятий, пищевой промышленности и ряда других производств. Данная разновидность адсорбционной очистки экономически оправдана при низких концентрациях загрязняющих веществ и (или) многокомпонентных загрязнителей.

· После очистки адсорбент не регенерируют, а подвергают, например, захоронению или сжиганию вместе с прочно хемосорбированным загрязнителем. Этот способ пригоден при использовании дешевых адсорбентов.

Фотокаталитическая очистка. Является одним из самых перспективных и эффективных методов очистки на сегодняшний день. Главное его преимущество – разложение опасных и вредных веществ на безвредные воду, углекислый газ и кислород. Взаимодействие катализатора и ультрафиолетовой лампы приводит к взаимодействию на молекулярном уровне загрязнителей и поверхности катализатора. Фотокаталитические фильтры абсолютно безвредны и не требуют замены очищающих элементов, что делает их использование безопасным и весьма выгодным.

Термическое дожигание. Дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750-1200 °C. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов.

При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные вещества в виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).

Важнейшими факторами, определяющими целесообразность термического обезвреживания, являются затраты энергии (топлива) для обеспечения высоких температур в зоне реакции, калорийность обезвреживаемых примесей, возможность предварительного подогрева очищаемых газов. Повышение концентрации дожигаемых примесей ведет к значительному снижению расхода топлива. В отдельных случаях процесс может протекать в автотермическом режиме, т. е. рабочий режим поддерживается только за счет тепла реакции глубокого окисления вредных примесей и предварительного подогрева исходной смеси отходящими обезвреженными газами.

Принципиальную трудность при использовании термического дожигания создает образование вторичных загрязнителей, таких как оксиды азота, хлор, SO2 и др.

Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.

Промывочный способ. Осуществляется промывкой жидкостью (водой) потока газа (воздуха). Принцип действия: жидкость (вода) вводимая в поток газа (воздуха) движется с высокой скоростью, дробиться на мелкие капли мелкодисперсную взвесь) обвалакивает частицы взвеси (происходит слияние жидкостной фракции и взвеси) в результате укрупненные взвеси гарантированно улавливаются промывочным пылеуловителем. Конструкция: конструктивно промывочные пылеуловители представлены скрубберами, мокрыми пылеуловителями, скоростными пылеуловителями, в которых жидкость движется с большой скоростью и пенными пылеуловителями, в которых газ в виде мелких пузырьков проходит через слой жидкости (воды).

Плазмохимические методы. Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных, коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

Недостатком данного метода являются:

· недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлемых энергиях разряда

· наличие остаточного озона, который необходимо разлагать термически либо каталитически

· существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

Гравитационный способ. Основан на гравитационном осаждении влаги и (или) взвешенных частиц. Принцип действия: газовый (воздушный) поток попадает в расширяющуюся осаждающую камеру (емкость) гравитационного пылеуловителя, в которой замедляется скорость потока и под действием гравитации происходит осаждение капельной влаги и (или) взвешенных частиц.

Конструкция: Конструктивно осаждающие камеры гравитационных пылеуловителей могут быть прямоточного типа, лабиринтного и полочного. Эффективность: гравитационный способ очистки газа позволяет улавливать крупные взвеси.

Плазмокаталитический метод. Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100 °C), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м³.).

Недостатками данного метода являются:

· большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м³,

· при больших концентрациях вредных веществ(свыше 1 г/м³) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом

Центробежный способ

Основан на инерционном осаждении влаги и (или) взвешенных частиц за счет создания в поле движения газового потока и взвеси центробежной силы. Центробежный способ очистки газа относится к инерционным способам очистки газа (воздуха). Принцип действия: газовый (воздушный) поток направляется в центробежный пылеуловитель в котором, за счет изменении направления движения газа (воздуха) с влагой и взвешенными частицами, как правило по спирали, происходит очистка газа. Плотность взвеси в несколько раз больше плотности газа (воздуха) и она продолжает двигаться по инерции в прежнем направлении и отделяется от газа (воздуха). За счет движения газа по спирали создается центробежная сила, которая во много раз превосходит силу тяжести. Конструкция: Конструктивно центробежные пылеуловители представлены циклонами. Эффективность: осаждается сравнительно мелкая пыль, с размером частиц 10 – 20 мкм.

Не стоит забывать об элементарных методах очистки воздуха от пыли, как влажная уборка, регулярное проветривание, поддержание оптимального уровня влажности и температурного режима. При этом периодически избавляться от скоплений в помещении большого количества хлама и ненужных предметов, которые являются «пылесборниками» и не несут в себе никаких полезных функций.

Основные схемы, формулы и т.д., иллюстрирующие содержание : схемы приводятся в тексте

Вопросы для самоконтроля:

1. Что такое атмосфера?

2. Что такое смог? Чем отличается Лос-Анжелевский от Лондонского типа смога?

3. Какие методы очистки атмосферного воздуха Вы знаете?

4. Как классифицируются загрязнения атмосферного воздуха?

5. Как классифицируются источники загрязнения воздуха?

6. Какие основные пути предотвращения загрязнения атмосферы представлены в лекции?

1. Акимова Т.А., Хаскин В.В., Экология. Человек-экономика-биота-среда., М., «ЮНИТИ», 2007

2. Бигалиев А.Б., Халилов М.Ф., Шарипова М.А. Основы общей экологии Алматы, «Қазақ университеті», 2006

3. Кукин П.П., Лапин В.Л., Пономарев Н.Л., Сердюк Н.И. Безопасность жизнедеятельности. Безопасность технологических процессов и производств (ОТ). – М.: Высшая школа, 2002. – 317 с.


ЛЕКЦИЯ 5. Очистка и повторное использование технической воды и промыш­ленных стоков.

Цель:

Изучить современные методы очистки сточных вод

Задачи:

- Изучить жидкую оболочку Земли

Знать экологические проблемы, связанные с нехваткой пресной воды и загрязнением поверхностных вод.

Уметь различать способы очистки сточных вод.

Характеристика водной оболочки Земли. Свойства воды.

Источники и уровни загрязнения гидросферы.

Экологические последствия загрязнения гидросферы.

Сточные воды и их классификация.

Методы водоочистки.

Аппараты для очистки воздуха и газов от пыли


Смесь воздуха с частицами материала, не уловленного в воздушных сепараторах (аспирационный воздух), а также отходящие запыленные газы вращающихся печей необходимо обеспыливать. Лишь после этого очищенный воздух (газ) может быть выброшен в атмосферу.

Аспирационный воздух и газы очищают двумя способами - сухим или мокрым.

Уловленная пыль представляет собой ценный материал, обычно возвращаемый в производство или используемый в других отраслях народного хозяйства.

Для отделения пыли от воздуха (газов) применяют следующие способы:
а) механическую очистку в центробежных циклонах («сухих»), в которых частицы материала отделяются под действием центробежных сил и сил тяжести, а также в циклонах-промывателях («мокрых») при наличии воды;
б) очистку с помощью рукавных (матерчатых) фильтров, ткань которых задерживает на своей поверхности частицы материала и пропускает очищенный воздух (газ);
в) электрическую очистку газов (воздуха) в электрофильтрах; частицы материала осаждаются в электрическом поле высокого напряжения;
г) мокрую очистку газов (в скрубберах).

В промышленности строительных материалов, главным образом в цементной, преимущественное распространение получил сухой способ очистки с использованием аспирационных шахт, пы-леосадительных камер, циклонов, рукавных и электрических фильтров.

Центробежный циклон представляет собой сварной корпус, состоящий из цилиндрической части (рис. II-16, а), конической и пылеотводящего патрубка.

Аспирационный воздух (газ) по наклонному входному патрубку поступает в циклон по касательной к его окружности со скоростью до 20-25 м/сек. Угол наклона патрубка - 15-24°. Крышка 5 согнута по винтовой линии и имеет шаг, равный высоте входного патрубка. Войдя по касательной к окружности циклона, аспирационный воздух вращается по винтовой линии и опускается вниз.

Вследствие центробежных сил частицы материала отбрасываются к внутренним стенкам циклона. Частицы материала (пыль) опускаются по стенкам циклона в коническую часть корпуса и далее через патрубок и пылевой затвор (мигалку), предупреждающий подсос извне воздуха, периодически сбрасываются наружу. Обеспыленный воздух или газ поднимается в верхнюю часть циклона и по патрубку 6 выбрасывается в атмосферу или направляется на дальнейшую очистку в рукавные или электрические фильтры.

Для обеспечения высокой степени очистки рекомендуется выбирать циклоны меньшего диаметра. Для увеличения пропускной способности (а следовательно, и производительности) применяют батарейные циклоны, в которых циклонные элементы одинакового диаметра монтируют в общем корпусе параллельно друг другу. Они имеют общий подвод и отвод воздуха, а также общий бункер для сбора пыли. На рис. II-16, б представлен циклонный элемент типа «Винт».

Степень очистки циклона зависит от его диаметра, размера частиц пыли, скорости, отнесенной к сечению наружного корпуса циклона, которая принимается в зависимости от конструкции циклона в пределах 2,4-3,5 м/сек. Степень очистки циклонов может быть принята равной 70-90%. Степень очистки батарейных циклонов колеблется от 78% (для частиц менее 10 мк) до 95% (для частиц менее 30 мк).

Рис. II-16. Центробежный циклон

При использовании циклонов в цементной промышленности принимают следующие параметры: начальная запыленность воздуха не выше 400 г/м3, давление или разрежение не выше 250 мм вод. ст. и температура газа не выше 400 °С.

Рис. II-17. Рукавный фильтр

Рукавный фильтр, показанный на рис. II-17, а, состоит из корпуса, в котором подвешены матерчатые рукава цилиндрической формы (диаметром 135-220 мм), сгруппированные (по 8-12 штук} в секции. Верхние концы рукавов наглухо прикреплены к планке, нижние концы рукавов открыты для входа аспирационного воздуха (газа), поступающего в рукавный фильтр по трубопроводу и через нижнюю камеру.

Проходя через фильтрующую ткань рукавов, воздух (газ) очищается, а пыль оседает на внутренних поверхностях рукавов. Очищенный воздух (газ) собирается в верхней части корпуса фильтра и по патрубку 6 транспортируется в общий воздуховод.

Рукавные фильтры работают под давлением или разрежением.

Рукава фильтров периодически продувают и встряхивают, так как с течением времени они забиваются пылью, причем с увеличением слоя сопротивление увеличивается. Во избежание конденсации водяных паров рукава продувают подогретым воздухом в направлении, обратном движению аспирационного воздуха (газа). Для встряхивания служит планка, соединенная со встряхивающим механизмом, работающим от отдельного электродвигателя.

Пыль с рукавов поступает в нижнюю часть корпуса фильтра и далее отводится винтовым конвейером наружу.

Фильтровальную ткань рукавов изготовляют из волокон хлопка, шерсти, нитрона, лавсана и стекла. Ткани из стекловолокна выдерживают температуру до 300 °С.

Степень очистки достигает 99% и зависит от удельных нагрузок на фильтровальную ткань, которая не должна превышать 1 м3/м2 -мин. При применении фильтровальной ткани из стекловолокна удельная нагрузка принимается не более 0,5-0,6 м3/м2 -мин.

На рис. II-17, б представлена секция рукавного фильтра из стекловолокна. Запыленный газ по трубопроводу направляется в камеры и в рукава. Пыль оседает на внутренних стенках рукавов, а очищенный газ через клапанную коробку дымососом отсасывается в атмосферу.

Во избежание порчи ткани из стекловолокна такие фильтры нельзя подвергать обычному механическому встряхиванию. В этом случае рукава от осевшей пыли очищают при помощи воздуха, направляемого пульсирующим потоком против движения газа. Реле времени подает сигнал на исполнительный механизм, с помощью которого-закрывается один из двух перекрывающих клапанов. В результате одна из камер отключается от дымососа. Одновременно с этим открывается клапан и продувочный воздух по каналам (как указано на рисунке стрелками) устремляется в отключенную от дымососа камеру. Так как клапан периодически открывается и закрывается, создается пульсирующий поток продувочного воздуха. Благодаря этому рукава из стекловолокна плавно деформируются и слой осевшей на рукавах пыли сбрасывается вниз в бункер и далее ячейковым питателем выводится наружу. Через установленный промежуток времени одна камера автоматически включается в работу, а вторая продувается воздухом.

Рукавные фильтры широко применяют в цементной промышленности для очистки аспирационного воздуха цементных мельниц, силосов, дробилок и др.

Электрофильтр. Электрический способ очистки аспирационного воздуха и отходящих газов вращающихся печей цементной промышленности наиболее совершенный. Степень очистки доходит до 98-99%. В электрофильтрах можно очищать химически агрессивные газы и газы с температурой до 425 °С.

Электрический способ очистки заключается в том, что при движении аспирационного воздуха (газа) через электрическое поле, созданное двумя электродами постоянного тока высокого напряжения, происходит его ионизация, т. е. процесс распада электрически нейтральной молекулы на положительно и отрицательно заряженные ионы. Частицы пыли, получив электрический заряд, перемещаются по направлению к тому электроду, заряд которого имеет противоположный знак.

Применяют два вида электродов: плоские пластины и проволока между ними или полый цилиндр (труба) и проволока внутри него. В зависимости от применяемых электродов электрофильтры класси-’ фицируют на пластинчатые и трубчатые. В цементной промышленности наибольшее распространение получили пластинчатые электрофильтры (типа УГ и УГТ).

На рис. II-18, а представлена принципиальная схема создания электрического поля. К проволоке (коронирующему электроду) подводится постоянный ток отрицательного знака. Осадительный электрод (пластина) присоединяется к положительному знаку и заземляется.

При появлении ионного разряда у проволоки замечается голубоватое свечение («корона»). При движении аспирационного воздуха (газов) вдоль осадительных электродов (как показано стрелкой А) происходят ионизация частиц пыли и осаждение ее на электродах. Коронирующие и осадительные электроды периодически встряхиваются системой молотков, размещенных внутри фильтра, приводы которых выведены наружу (рис. 11-18, б).

Для равномерного распределения газа по поперечному сечению электрофильтра служит газораспределительная решетка, снабженная механизмом встряхивания с электроприводом. Внутри корпуса электрофильтра установлены коронирующие и осадительные электроды. Коронирующие электроды выполнены из нихромовой проволоки диаметром 2,5 мм. Они свободно подвешены и имеют грузы.

Корпуса электрофильтров могут работать под разряжением до 400 ли вод. ст. (УГТ). Осевшая на электродах пыль сбрасывается в бункера, откуда системой винтовых конвейеров направляется в пневмонасос и далее на склад. Во избежание зависания пыли в бункерах предусмотрена установка вибраторов.

Рис. II-18. Электрофильтр УГ
а - принципиальная схема создания электрического поля; б - конструкция электрофильтра

Очищенные от пыли газы дымососом направляются в дымовую трубу. В зависимости от агрегата, за которым устанавливается электрофильтр (мельница, вращающаяся печь и др.), скорости движения газов в электрофильтре принимаются от 1 до 1,5 м/сек. При этих скоростях обеспечивается достаточное время пребывания газа в электрофильтре.

Для питания электрофильтров током высокого напряжения (номинальное выпрямленное напряжение 80 кв и номинальный выпрямленный ток 250-400 ма) применяют полупроводниковые выпрямительные агрегаты АРС, обеспечивающие плавное автоматическое регулирование напряжения на электродах фильтра. Пуск агрегатов АРС и контроль за их работой могут осуществляться дистанционно.

К атегория: - Машины в производстве стройматериалов