Методы определения теплопроводности материалов. Особенности определения теплопроводности строительных материалов. Определить зависимость коэффициента теплопроводности от температуры

В процессе их теплового движения. В жидкостях и твердых телах- диэлектриках - перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения. В металлах теплопроводность осуществляется главным образом вследствие движения свободных электронов.

В основной зеком теплопроводности входит ряд математических понятий, оп-ределения которых, целесообразно напомнить и пояснить.

Температурное поле — это со-вокупности значений температуры во всех точках тела в данный момент време-ни. Математически оно описывается ввиде t = f (x, y, z, τ ). Различают стационарное температурное поле, когда температура во всех точках тела не зависит от времени (не изменяется с течением времени), и нестационарное температурное поле . Кроме то-го, если температура изменяется только по одной или двум пространственным координатам, то температурное поле на-зывают соответственно одно- или двух - мерным.

Изотермическая поверхность - это геометрическое место точек, температура в которых одинакова.

Градиент температуры grad t есть вектор, направленный по нор-мали к изотермической поверхности и численно равный производной от тем-пературы по этому направлению.

Согласно основному закону тепло-проводности — закону Фурье (1822 г.), вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален градиенту температуры:

q = - λ grad t , (3)

где λ — коэффициент теплопро-водности вещества; его единица измерения Вт /(м·К ).

Знак минус в уравнении (3) ука-зывает на то, что вектор q направлен противоположно вектору grad t , т.е. в сторону наибольшего уменьшения температуры.

Тепловой поток δQ через произволь-но ориентированную элементарную пло-щадку dF равен скалярному произведе-нию вектора q на вектор элементарной площадки dF , а полный тепловой поток Q через всю поверхность F определяется интегрированием этого произведения по поверхности F:

КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ

Коэффициент теплопроводности λ в законе Фурье (3) характеризует спо-собность данного вещества проводить теплоту. Значения коэффициентов тепло-проводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности λ = q/ grad t равен плотности теплового потока q при градиенте температуры grad t = 1 К/м . Наиболь-шей теплопроводностью обладает легкий газ — водород. При комнатных условиях коэффициент теплопроводности водорода λ = 0,2 Вт /(м·К ). У более тяжелых газов теплопроводность меньше — у воз-духа λ = 0,025 Вт /(м·К ), у диоксида уг-лерода λ = 0,02 Вт /(м·К ).


Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь: λ = 400 Вт /(м·К ). Для углеродистых сталей λ = 50 Вт /(м·К ). У жидкостей коэффициент теплопроводности, как правило, меньше 1 Вт /(м·К ). Вода является одним из лучших жидких проводников теплоты, для нее λ = 0,6 Вт /(м·К ).

Коэффициент теплопроводности неметаллических твердых материалов обычно ниже 10 Вт /(м·К ).

Пористые материалы - пробка, различные волокнистые наполнители типа органической ваты - обладают наименьшими коэффициентами теплопроводности λ <0,25 Вт /(м·К ), приближающимся при малой плотности набивки к коэффициенту теплопроводности воздуха, наполняющего поры.

Значительное влияние на коэффициент теплопроводности могут оказывать температура, давление, а у пористых материалов ещё и влажность. В справочниках всегда приводятся условия, при которых определялся коэффициент теплопроводности данного вещества, и для других условий эти данныеиспользовать нельзя. Диапазоны значений λ для различных материалов приведены на рис. 1.

Рис.1. Интервалы значений коэффициентов теплопроводности различных веществ.

Перенос теплоты теплопроводностью

Однородная плоская стенка .

Про-стейшей и очень распространенной за-дачей, решаемой теорией теплообмена, является определение плотности тепло-вого потока, передаваемого через плоскую стенку толщиной δ , на повер-хностях которой поддерживаются темпе-ратуры t w1 и t w2 . (рис.2). Температура изменяется только по толщине пластины - по одной координате х. Такие за-дачи называются одномерными, решения их наиболее просты, и в данном курсе мы ограничимся рассмотрением только од-номерных задач.

Учитывая, что для од-номерного случая :

grad t = dt/dх , (5)

и используя основной закон теплопроводности (2), получаем дифференци-альное уравнение стационарной тепло-проводности для плоской стенки:

В стационарных условиях, когда энергия не расходуется на нагрев, плот-ность теплового потока q неизменна по толщине стенки. В большинстве практи-ческих задач приближенно пред-полагается, что коэффициент тепло-проводности λ не зависит от температуры и одинаков по всей толщине стенки. Зна-чение λ находят в справочниках при температуре:

средней между температурами поверхно-стей стенки. (Погрешность расчетов при этом обычно меньше погрешности исход-ных данных и табличных величин, а при линейной зависимости коэффициента теплопроводности от температуры: λ = а+ bt точная расчетная формула для q не отличается от приближенной). При λ = const :

(7)

т.е. зависимость температуры t от координаты х линейна (рис. 2).

Рис.2. Стационарное распределение темпе-ратуры по толщине плоской стенки.

Разделив переменные в уравнении (7) и проинтегрировав по t от t w1 до t w2 и по х от 0 до δ :

, (8)

получим зависимость для расчета плот-ности теплового потока:

, (9)

или мощность теплового потока (тепловой поток):

(10)

Следовательно, количество теплоты, переданной через 1 м 2 стенки, прямо пропорционально коэффициенту теплопроводности λ и разности температур наружных поверхностей стенки (t w1 - t w2 ) и обратно пропорционально толщине стенки δ . Общее количество теплоты через стенку площадью F еще и пропорционально этой площади.

Полученная простейшая формула (10) имеет очень широкое распространение в тепло-вых расчетах. По этой формуле не только рассчитывают плотности теплового потока через плоские стенки, но и делают оценки для случаев более сложных, уп-рощенно заменяя в расчетах стенки сложной конфигурации на плоскую стенку. Иногда уже на основании оценки тот или иной вариант отвергается без дальней-ших затрат времени на его детальную проработку.

Температура тела в точке х определяется по формуле:

t x = t w1 - (t w1 - t w2) × (x × d)

Отношение λF/δ называется тепло-вой проводимостью стенки, а обратная величина δ/λF тепловым или термическим сопротивлением стенки и обозначается R λ . Пользуясь понятием термического сопро-тивления, формулу для расчета теплово-го потока можно представить в виде:

Зависимость (11) аналогична закону Ома в электротехни-ке (сила электрического тока равна раз-ности потенциалов, деленной на электри-ческое сопротивление проводника, по ко-торому течет ток).

Очень часто термическим сопротив-лением называют величину δ/λ, которая равна термическому сопротивлению плоской стенки площадью 1 м 2 .

Примеры расчетов .

Пример 1 . Определить тепловой поток через бетонную стену здания толщиной 200 мм , высотой H = 2,5 м и длиной 2 м , если температуры на ее поверхностях: t с1 = 20 0 С, t с2 = - 10 0 С, а коэффициент теплопроводно-сти λ =1 Вт /(м·К ):

= 750 Вт .

Пример 2 . Определить коэффициент теплопроводности материала стенки толщиной 50 мм , если плотность теплового потока через нее q = 100 Вт /м 2 , а разность температур на поверхностях Δt = 20 0 С.

Вт /(м·К ).

Многослойная стенка .

Формулой (10) можно воспользоваться и для расчета теплового потока через стенку, состоя-щую из нескольких (n ) плотно прилегающих друг к другу слоев разнородных материа-лов (рис. 3), например, головку цилиндров, прокладку и блока цилиндров, выполненных из разных материалов, и т д.

Рис.3. Распределение температуры по толщине многослойной плоской стенки.

Термическое сопротивление такой стенки равно сумме термических сопротивлений отдельных слоев:

(12)

В формулу (12) нужно подставить разность температур в тех точках (по-верхностях), между которыми «включе-ны» все суммируемые термические сопротивления, т.е. в данном случае: t w1 и t w(n+1) :

, (13)

где i - номер слоя.

При стационарном режиме удельный тепловой поток через многослойную стенку постоянен и для всех слоев одинаков. Из (13) следует:

. (14)

Из уравнения (14) следует, что общее термическое сопротивление многослойной стенки равно сумме сопротивлений каждого слоя.

Формулу (13) легко получить, записав разность температур по формуле (10) для каждого из п слоев многослой-ной стенки и сложив все п выражений с учетом того, что во всех слоях Q имеет одно и то же значение. При сложении все промежуточные температуры сократятся.

Распределение температуры в преде-лах каждого слоя — линейное, однако, в различных слоях крутизна температур-ной зависимости различна, поскольку со-гласно формуле (7) (dt/dx ) i = - q/λ i . Плотность теплового потока, проходяще-го через все слон, в стационарном режи-ме одинакова, а коэффициент теплопро-водности слоев различен, следовательно, более резко температура меняется в сло-ях с меньшей теплопроводностью. Так, в примере на рис.4 наименьшей тепло-проводностью обладает материал второ-го слоя (например, прокладки), а наибольшей — третьего слоя.

Рассчитав тепловой поток через мно-гослойную стенку, можно определить па-дение температуры в каждом слое по соотношению (10) и найти температу-ры на границах всех слоев. Это очень важно при использовании в качестве теплоизоляторов материалов с ограничен-ной допустимой температурой.

Температура слоев определяется по следующей формуле:

t сл1 = t c т1 - q × (d 1 × l 1 -1)

t сл2 = t c л1 - q × (d 2 × l 2 -1)

Контактное термическое сопротивле-ние . При выводе формул для многослойной стенки предполагалось, что слои плотно прилегают друг к другу, и благодаря хорошему контакту соприкасающиеся поверхности разных слоев имеют одну и ту же температуру. Идеально плотный контакт между отдельными слоями многослойной стенки получается, если одни из слоев наносят на другой слой в жидком состоянии или в виде текучего раствора. Твердые тела касаются друг друга только вершинами профилей шеро-ховатостей (рис.4).

Площадь контакта вершин пренебрежимо мала, и весь тепловой по-ток идет через воздушный зазор (h ). Это создает дополнительное (контактное) термическое сопротивление R к . Термические контактные сопротивления, могут быть определены самостоятельно с использованием соответствующих эмпирических зависимостей или экспериментально. Например, термическое сопротивление зазора в 0,03 мм примерно эквивалентно термическому сопро-тивлению слоя стали толщиной около 30 мм .

Рис.4. Изображение контактов двух шерохо-ватых поверхностей.

Методы снижения термического контактного сопротивления. Полное термическое сопротивление контакта определяется чистотой обработки, нагрузкой, теплопроводностью среды, коэффициентами теплопроводности материалов контактирующих деталей и другими факторами.

Наибольшую эффективность снижения термического сопротивления дает введение в контактную зону среды с теплопроводностью, близкой к теплопроводности металла.

Существуют следующие возможности заполнения контактной зоны веществами:

Использование прокладок из мягких металлов;

Введение в контактную зону порошкообразного вещества с хорошей тепловой проводимостью;

Введение в зону вязкого вещества с хорошей тепловой проводимостью;

Заполнение пространства между выступами шероховатостей жидким металлом.

Наилучшие результаты получены при заполнении контактной зоны расплавленным оловом. В этом случае термическое сопротивление контакта практически становится равным нулю.

Цилиндрическая стенка .

Очень часто теплоносители движутся по трубам (цилиндрам), и требуется рассчитать тепловой поток, передаваемый через цилиндрическую стенку трубы (цилиндра). Задача о передаче теплоты через цилиндрическую стенку (при известных и постоянных значениях температуры на внутренней и наружной поверхностях) также является одномерной, если ее рассматри-вать в цилиндрических координатах (рис.4).

Температура изменяется только вдоль радиуса, а по длине трубы l и по ее периметру остается неизменной.

В этом случае уравнение теплового потока имеет вид:

. (15)

Зависимость (15) показывает, что количество теплоты, переданной через стенку цилиндра, прямо пропорционально коэффициенту теплопроводности λ , длине трубы l и температурному напору (t w1 - t w2 ) и обратно пропорционально натуральному логарифму отношения внешнего диаметра цилиндра d 2 к его внутреннему диаметру d 1 .

Рис. 4. Изменение температуры по толщине однослойной цилиндрической стенки.

При λ = const распределение темпера-туры порадиусу r однослойной цилиндрической стенки подчиняется ло-гарифмическому закону (рис. 4).

Пример . Во сколько раз уменьшаются тепловые потери через стенку здания, если между двумя слоями кирпичей толщиной по 250 мм установить прокладку пенопласта толщиной 50 мм . Коэффициенты теплопроводности соответственно равны: λ кирп . = 0,5 Вт /(м·К ); λ пен. . = 0,05 Вт /(м·К ).

Способность материалов и веществ проводить тепло называется теплопроводностью (X,) и выражается коли­чеством тепла, проходящим через стенку площадью 1 м2, Толщиной 1 м за 1 ч при разности температур на противо­положных поверхностях стенки в 1 град. Единица изме­рения теплопроводности - Вт/(м-К) или Вт/(м-°С).

Теплопроводность материалов определяют

Где Q - количество тепла (энергии), Вт; F - площадь сечения материала (образца), перпендикулярная направ­лению теплового потока, м2; At- разность температур на противоположных поверхностях образца, К или °С; б- толщина образца, м.

Теплопроводность - один из главных показателей свойств теплоизоляционных материалов. Этот показатель зависит от целого ряда факторов: общей пористости ма­териала, размера и формы пор, вида твердой фазы, вида газа, заполняющего поры, температуры и т. п.

Зависимость теплопроводности от этих факторов в наиболее универсальном виде выражают уравнением Лееба:

_______ Ђs ______ - і

Где Кр--теплопроводность материала; Xs - теплопровод­ность твердой фазы материала; Рс - количество пор, на­ходящихся в сечении, перпендикулярном потоку тепла; Pi -количество пор, находящихся в сечении, параллель­ном потоку тепла; б - радиальная постоянная; є - излу­чаемость; v - геометрический фактор, влияющий на. из­лучение внутри пор; Tt - средняя абсолютная температу­ра; d - средний диаметр пор.

Знание теплопроводности того или иного теплоизоля­ционного материала позволяет правильно оценить его теплоизоляционные качества и рассчитать толщину теп­лоизоляционной конструкции из этого материала по за­данным условиям.

В настоящее время существует ряд методов определе­ния теплопроводности материалов, основанных на изме­рении стационарного и нестационарного потоков тепла.

Первая группа методов позволяет проводить измере­ния в широком диапазоне температур (от 20 до 700° С) и получать более точные результаты. Недостатком мето­дов измерения стационарного потока тепла является большая продолжительность опыта, измеряемая часами.

Вторая группа методов позволяет проводить экспери­мент в течение нескольких минут (до 1 ч), но зато при­годна для определения теплопроводности материалов лишь при сравнительно низких температурах.

Измерение теплопроводности строительных материа­лов этим методом производят, пользуясь прибором, изо­браженным на рис. 22. При этом с помощью малоинер­ционного тепломера производят измерение стационарного теплового потока, проходящего через испытуемый обра­зец материала.

Прибор состоит из плоского электронагревателя 7 и малоинерционного тепломера 9, установленного на рас­стоянии 2 мм от поверхности холодильника 10, через ко­торый непрерывно протекает вода с постоянной темпера­турой. На поверхностях нагревателя и тепломера зало­жены термопары 1,2,4 и 5. Прибор помещен в металли­ческий кожух 6, заполненный теплоизоляционным мате­риалом. Плотное прилегание образца 8 к тепломеру и на­гревателю обеспечивается прижимным приспособлением 3. Нагреватель, тепломер и холодильник имеют форму диска диаметром 250 мм.

Тепловой поток от нагревателя через образец и мало­инерционный тепломер передается холодильнику. Вели­чина теплового потока, проходящего через центральную часть образца, измеряется тепломером, представляющим собой термобатарею на паранитовом диске, или тепло - мером с воспроизводящим элементом, в который вмонти­рован плоский электрический нагреватель.

Прибором можно измерять теплопроводность при тем­пературе на горячей поверхности образца от 25 до 700° С.

В комплект прибора входят: терморегулятор типа РО-1, потенциометр типа КП-59, лабораторный авто­трансформатор типа РНО-250-2, переключатель термо­пар МГП, термостат ТС-16, амперметр технический пе­ременного тока до 5 А и термос.

Образцы материала, подвергающиеся испытанию, должны иметь в плане форму круга диаметром 250 мм. Толщина образцов должна быть не более 50 и не менее 10 мм. Толщину образцов измеряют с точностью до 0,1 мм и определяют как среднее арифметическое из ре­зультатов четырех измерений. Поверхности образцов должны быть плоскими и параллельными.

При испытании волокнистых, сыпучих, мягких и полу­жестких теплоизоляционных материалов отобранные об­разцы помещают в обоймы диаметром 250 мм и высотой 30-40 мм, изготовленные из асбестового картона толщи­ной 3-4 мм.

Плотность отобранной пробы, находящейся под удель­ной нагрузкой, должны быть равномерна по всему объему и соответствовать средней плотности испытуемого мате­риала.

Образцы перед испытанием должны быть высушены до постоянной массы при температуре 105-110° С.

Подготовленный к испытаниям образец укладывают на тепломер и прижимают нагревателем. Затем устанав­ливают терморегулятор нагревателя прибора на задан­ную температуру и включают нагреватель в сеть. После установления стационарного режима, при котором в тече­ние 30 мин показания тепломера будут постоянными, от­мечают показания термопар по шкале потенциометра.

При применении малоинерционного тепломера с вос­производящим элементом переводят показания тепломе­ра на нуль-гальванометр и включают ток через реостат, и миллиамперметр на компенсацию, добиваясь при этом положения стрелки нуль-гальванометра на 0, после чего регистрируют показания по шкале прибора в мА.

При измерении количества тепла малоинерционным тепломером с воспроизводящим элементом расчет тепло­проводности материала производят по формуле

Где б - толщина образца, м; T - температура горячей поверхности образца, °С; - температура холодной по­верхности образца, °С; Q - количество тепла, проходя­щее через образец в направлении, перпендикулярном его поверхности, Вт/м2.

Где R - постоянное сопротивление нагревателя тепломе­ра, Ом; / - сила тока, A; F - площадь тепломера, м2.

При измерении количества тепла (Q) градуированным малоинерционным тепломером расчет производят по фор­муле Q = AE (Вт/м2), где Е - электродвижущая сила (ЭДС), мВ; А - постоянная прибора, указанная в гра- дуировочном свидетельстве на тепломер.

Температуру поверхностей образца измеряют с точ­ностью до 0,1 С (при условии стационарного состояния). Тепловой поток вычисляют с точностью до 1 Вт/м2, а теп­лопроводность- до 0,001 Вт/(м-°С).

При работе на данном приборе необходимо произво­дить его периодическую проверку путем испытания стан­дартных образцов, которые предоставляют научно-ис­следовательские институты метрологии и лаборатории Комитета стандартов, мер и измерительных приборов при Совете Министров СССР.

После проведения опыта и получения данных состав­ляют свидетельство об испытании материала, в котором должны содержаться следующие данные: наименование и адрес лаборатории, проводившей испытания; дата про­ведения испытания; наименование и характеристика ма­териала; средняя плотность материала в сухом состоя­нии; средняя температура образца во время испытания; теплопроводность материала при этой температуре.

Метод двух пластин позволяет получать более достоверные результаты, чем рассмотренные выше, так как испытанию подвергают сразу два образца-близнеца и, кроме того, тепловой поток, проходящий через образ­цы, имеет два направления: через один образец он идет снизу вверх, а через другой - сверху вниз. Это обстоя­тельство в значительной степени способствует усредне­нию результатов испытания и приближает условия опы­та к реальным условиям службы материала.

Принципиальная схема двухпластинчатого прибора для определения теплопроводности материалов методом стационарного режима показана на рис. 23.

Прибор состоит из центрального нагревателя 1, охран­ного нагревателя 2, охладительных дисков 6, которые од-

Новременно прижимают образцы материала 4 к нагре­вателям, изоляционной засыпки 3, термопар 5 и кожуха 7.

В комплект прибора входит следующая регулиру­ющая и измерительная аппаратура. Стабилизатор на­пряжения (СН), автотрансформаторы (Т), ваттметр (W ), Амперметры (А), регулятор температуры охранного на­гревателя (Р), переключатель термопар (Я), гальвано­метр или потенциометр для измерения температуры (Г) И сосуд со льдом (С).

Для обеспечения одинаковых граничных условий у пе­риметра испытуемых образцов форма нагревателя при­нята дисковой. Диаметр основного (рабочего) нагревате­ля для удобства расчета принят равным 112,5 мм, что соответствует площади в 0,01 м2.

Испытание материала на теплопроводность произво­дят следующим образом.

Из отобранного для испытания материала изготовля­ют два образца-близнеца в виде дисков диаметром, рав­ным диаметру охранного кольца (250 мм). Толщина об­разцов должны быть одинаковой и находиться в пределах от 10 до 50 мм. Поверхности образцов должны быть плоскими и параллельными, без царапин и вмятин.

Испытание волокнистых и сыпучих материалов про­изводят в специальных обоймах из асбестового картона.

Перед испытанием образцы высушивают до постоян­ной массы и измеряют их толщину с точностью до 0,1 мм.

Образцы укладывают с двух сторон электронагрева­теля и прижимают их к нему охладительными дисками. Затем устанавливают регулятор напряжения (латр) в по­ложение, при котором обеспечивается заданная темпера­тура электронагревателя. Включают циркуляцию воды в охладительных дисках и после достижения установив­шегося режима, наблюдаемого по гальванометру, изме­ряют температуру у горячих и холодных поверхностей образцов, для чего пользуются соответствующими термо­парами и гальванометром или потенциометром. Одновре­менно измеряют расход электроэнергии. После этого вы­ключают электронагреватель, а через 2-3 ч прекращают подачу воды в охладительные диски.

Теплопроводность материала, Вт/(м-°С),

Где W - расход электроэнергии, Вт; б - толщина образ­ца, м; F - площадь одной поверхности электронагрева­теля, м2;. t - температура у горячей поверхности образ­ца, °С; І2 - температура у холодной поверхности образ­ца, °С.

Окончательные результаты по определению теплопро­водности относят к средней температуре образцов
где t - температура у горячей поверхности образца (средняя двух образцов), °С; t 2 - температура у холод­ной поверхности образцов (средняя двух образцов), °С.

Метод трубы. Для определения теплопроводности теплоизоляционных изделий с криволинейной поверх­ностью (скорлуп, цилиндров, сегментов) применяют ус­тановку, принципиальная схема которой показана на

Рис. 24. Эта установка представляет собой стальную тру­бу диаметром 100-150 мм и длиной не менее 2,5 м. Внут­ри трубы на огнеупорном материале смонтирован нагре­вательный элемент, который разделен на три самостоя­тельные секции по длине трубы: центральную (рабочую), занимающую примерно ]/з длины трубы, и боковые, слу­жащие для устранения утечки тепла через торцы прибора (трубы).

Трубу устанавливают на подвесках или на подставках на расстоянии 1,5-2 м от пола, стен и потолка помеще­ния.

Температуру трубы и поверхности испытуемого ма­териала измеряют термопарами. При проведении испыта­ния необходимо регулировать мощность электроэнергии, потребляемую охранными секциями, для исключения пе­репада температуры между рабочей и охранными секция­
ми. Испытания проводят при установившемся тепловом режиме, при котором температура на поверхностях тру­бы и изоляционного материала постоянна в течение 30 мин.

Расход электроэнергии рабочим нагревателем можно измерять как ваттметром, так и отдельно вольтметром и амперметром.

Теплопроводность материала, Вт/(м ■ °С),

X -_____ D

Где D - наружный диаметр испытуемого изделия, м; d - Внутренний диаметр испытуемого материала, м; - тем­пература на поверхности трубы, °С; t 2 - температура на внешней поверхности испытуемого изделия, °С; I - длина рабочей секции нагревателя, м.

Кроме теплопроводности на данном приборе можно замерять величину теплового потока в теплоизоляцион­ной конструкции, изготовленной из того или иного тепло­изоляционного материала. Тепловой поток (Вт/м2)

Определение теплопроводности, основанное на мето­дах нестационарного потока тепла (методы динамиче­ских измерений). Методы, основанные на измерении не­стационарных потоков тепла (методы динамических из­мерений), в последнее время все шире применяются ДЛЯ определения теплофизических величин. Преимуществом этих методов является не только сравнительная быстрота проведения опытов, но и больший объем информации, по­лучаемой за один опыт. Здесь к другим параметрам кон­тролируемого процесса добавляется еще один - время. Благодаря этому только динамические методы позволя­ют получать по результатам одного опыта теплофизиче - ские характеристики материалов такие, как теплопровод­ность, теплоемкость, температуропроводность, темп ох­лаждения (нагревания)

В настоящее время существует большое количество методов и приборов для измерения динамических темпе­ратур и тепловых потоков. Однако все они требуют зна­
Ния конкретных условий и введения поправок к получен­ным результатам, так как процессы измерения тепловых величин отличаются от измерения величин другой при­роды (механических, оптических, электрических, акусти­ческих и др.) своей значи­тельной инерционностью.

Поэтому методы, ос­нованные на измерении стационарных потоков тепла, отличаются от рас­сматриваемых методов значительно большей идентичностью между ре­зультатами измерений и истинными значениями измеряемых тепловых ве­личин.

Совершенств о в а н и е динамических методов измерений идет по трем направлениям. Во-пер­вых, это развитие мето­дов анализа погрешно­стей и введения поправок в результаты измерений. Во-вторых, разработка автоматических коррек­тирующих устройств для компенсации динамиче­ских погрешностей.

Рассмотрим два наи­более распространенных в СССР метода, основан­ных на измерении неста­ционарного потока тепла.

1. Метод регу­лярного теплового режима с бикало - риметром. При при­менении этого метода мо­гут быть использованы различные типы конструкции бикалориметров. рассмот­рим один из них - малогабаритный плоский бикалори - метр типа МПБ-64-1 (рис. 25), который предназначен
для определения теплопроводности полужестких, волок­нистых и сыпучих теплоизоляционных материалов при комнатной температуре.

Прибор МПБ-64-1 представляет собой цилиндрической формы разъемную оболочку (корпус) с внутренним диа­метром 105 мм, в центре которой встроен сердечник с вмонтированным в него нагревателем и батареей диффе­ренциальных термопар. Прибор изготовлен из дюралюми­ния марки Д16Т.

Термобатарея дифференциальных термопар бикало - риметра оснащена медно-копелевыми термопарами, диа­метр электродов которых равен 0,2 мм. Концы витков тер­мобатарей выведены на латунные лепестки кольца из стеклоткани, пропитанной клеем БФ-2, и далее через про­вода к вилке. Нагревательный элемент, выполненный из Нихромовой проволоки диаметром 0,1 мм, нашит на про­питанную клеем БФ-2 круглую пластинку из стекло ткани. Концы проволоки нагревательного элемента, так же как и концы проволоки термобатареи, выведены на латунные лепестки кольца и далее, через вилку, к источнику пита­ния. Нагревательный элемент может питаться от сети пе­ременного тока напряжением 127 В.

Прибор герметичен благодаря уплотнению из вакуум­ной резины, заложенной между корпусом и крышками, а также сальниковой набивке (пеньково-суриковой) между ручкой, бобышкой и корпусом.

Термопары, нагреватель и их выводы должны быть хорошо изолированы от корпуса.

Размеры испытуемых образцов не должны превышать в диаметре 104 мм и по толщине-16 мм. На приборе одновременно производят испытание двух образцов-близ­нецов.

Работа прибора основана на следующем принципе.

Процесс охлаждения твердого тела, нагретого до тем­пературы T ° и помещенного в среду с температурой ©<Ґ при весьма большой теплопередаче (а) от тела к Среде («->-00) и при постоянной температуре этой среды (0 = const), делится на три стадии.

1. Распределение температуры в теле носит сначала случайный характер, т. е. имеет место неупорядоченный тепловой режим.

2. С течением времени охлаждение становится упоря­доченным, т. е. наступает регулярный режим, при кото­
ром изменение температуры в каждой точке тела подчи­няется экспоненциальному закону:

Q - AUe.-"1

Где © - повышенная температура в какой-нибудь точке тела; U - некоторая функция координат точки; е-осно­вание натуральных логарифмов; т - время от начала охлаждения тела; т - темп охлаждения; А - постоянная прибора, зависящая от начальных условий.

3. После регулярного режима охлаждение характери­зуется наступлением теплового равновесия тела с окру­жающей средой.

Темп охлаждения т после дифференцирования выра­жения

По т в координатах In В -Т выражается следующим об­разом:

Где А и В - константы прибора; С - полная теплоем­кость испытуемого материала, равная произведению удельной теплоемкости материала на его массу, Дж/(кг-°С);т - темп охлаждения, 1/ч.

Испытание проводят следующим образом. После по­мещения образцов в прибор крышки прибора плотно при­жимают к корпусу с помощью гайки с накаткой. Прибор опускают в термостат с мешалкой, например в термо­стат ТС-16, заполненный водой комнатной температуры, затем подсоединяют термобатарею дифференциальных термопар к гальванометру. Прибор выдерживают в тер­мостате до выравнивания температур наружной и внут­ренней поверхностей образцов испытуемого материала, что фиксируется показанием гальванометра. После это­го включают нагреватель сердечника. Сердечник нагре­вают до температуры, превышающей на 30-40° темпера­туру воды в термостате, а затем выключают нагреватель. Когда стрелка гальванометра возвратится в пределы шкалы, производят запись убывающих во времени пока­заний гальванометра. Всего записывают 8-10 точек.

В системе координат 1п0-т строят график, который должен иметь вид прямой линии, пересекающей в некото­рых точках оси абсцисс и ординат. Затем рассчитывают тангенс угла наклона полученной прямой, который выра­жает величину темпа охлаждения материала:

__ In 6t - In O2 __ 6 02

ТІЬ - - j

T2 - Tj 12 - "El

Где Bi и 02 - соответствующие ординаты для времени Ті и Т2.

Опыт повторяют вновь и еще раз определяют темп охлаждения. Если расхождение в значениях темпа охлаж­дения, вычисленного при первом и втором опытах, менее 5%, то ограничиваются этими двумя опытами. Среднее значение темпа охлаждения определяют по результатам двух опытов и вычисляют величину теплопроводности ма­териала, Вт/(м*°С)

Х = (А + ЯСуР)/и.

Пример. Испытуемый материал - минераловатный мат на фенольном связующем со средней плотностью в сухом состоянии 80 кг/м3.

1. Вычисляем величину навески материала, помеща­емую в прибор,

Где Рп- навеска материала, помещаемая в одну цилин­дрическую емкость прибора, кг; Vn - объем одной ци­линдрической емкости прибора, равный 140 см3; рср - средняя плотность материала, г/см3.

2. Определяем произведение BCYP , где В - константа прибора, равная 0,324; С - удельная теплоемкость ма­териала, равная 0,8237 кДж/(кг-К). Тогда ВСУР= =0,324 0,8237 0,0224 = 0,00598.

3. Результаты наблюдений за охлаждением образцов в приборе во времени заносим в табл. 2.

Расхождения в значениях темпа охлаждения т и т2 менее 5%, поэтому повторные опыты можно не произво­дить.

4. Вычисляем средний темп охлаждения

Т=(2,41 + 2,104)/2=2,072.

Зная все необходимые величины, подсчитываем тепло­проводность

(0,0169+0,00598) 2,072=0,047 Вт/(м-К)

Или Вт/(м-°С).

При этом средняя температура образцов составляла 303 К или 30° С. В формуле 0,0169 -Л (константа при­бора) .

2. Зондовый метод. Существует несколько раз­новидностей зондового метода определения теплопровод­
ности теплоизоляционных материалов, отличающихся друг от друга применяющимися приборами и принципами нагрева зонда. Рассмотрим один из этих методов - метод цилиндрического зонда без электронагревателя.

Этот метод заключается в следующем. Металлический стержень диаметром 5-6 мм (рис. 26) и длиной около 100 мм вводят в толщу горячего теплоизоляционного ма­териала и с помощью вмонтированной внутри стержня

Термопары определяют температуру. Определение темпе­ратуры производят в два приема: в начале опыта (в мо­мент нагревания зонда) и в конце, когда наступает рав­новесное состояние и повышение температуры зонда пре­кращается. Время между этими двумя отсчетами заме­ряют с помощью секундомера. ч Теплопроводность материала, Вт/ (м °С), , R 2CV

Где R - радиус стержня, м; С - удельная теплоемкость материала, из которого изготовлен стержень, кДж/(кгХ ХК); V-объем стержня, м3; т - промежуток времени между отсчетами температуры, ч; tx и U - значения тем­ператур в момент первого и второго отсчетов, К или °С.

Этот способ очень прост и позволяет быстро опреде­лить теплопроводность материала как в лабораторных, так и в производственных условиях. Однако он пригоден лишь для грубой оценки этого показателя.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ

СТАНДАРТ

РОССИЙСКОЙ

ФЕДЕРАЦИИ

КОМПОЗИТЫ

Издание официальное

Стшдфттфцм

ГОСТ Р 57967-2017

Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт авиационных материалов» совместно с Автономной некоммерческой организацией «Центр нормирования, стандартизации и классификации композитов» при участии Объединения юридических лиц «Союз производителей композитов» на основе официального перевода на русский язык англоязычной версии указанного в пункте 4 стандарта, который выполнен ТК 497

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 497 «Композиты, конструкции и изделия из них»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 21 ноября 2017 г. № 1785-ст

4 Настоящий стандарт является модифицированным по отношению к стандарту АСТМ Е1225-13 «Стандартный метод испытания на определение теплопроводности твердых веществ методом сравнительного продольно-огражденного теплового потока» (ASTM E122S-13 «Standard Test Method for Thermal Conductivity of Solids Using the Guard ed-Comparative-Longitudinal Heat Flow Technique», MOD) путем изменения его структуры для приведения в соответствие с правилами, установленными в ГОСТ 1.5-2001 (подразделы 4.2 и 4.3).

В настоящий стандарт не включены пункты 5. 12. подпункты 1.2, 1.3 примененного стандарта АСТМ. которые нецелесообразно применять в российской национальной стандартизации в связи с их избыточностью.

Указанные пункты и подпункты, не включенные в основную часть настоящего стандарта, приведены в дополнительном приложении ДА.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта АСТМ для приведения в соответствие с ГОСТ Р 1.5-2012 (подраздел 3.5).

Сопоставление структуры настоящего стандарта со структурой указанного стандарта АСТМ приведено в дополнительном приложении ДБ.

Сведения о соответствии ссылочного национального стандарта стандарту АСТМ. использованному в качестве ссылочного в примененном стандарте АСТМ. приведены в дополнительном приложении ДВ

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N9 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется е ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и пол давок - е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация. уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет ()

© Стамдартинформ. 2017

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ Р 57967-2017

1 Область применения.................................................................1

3 Термины, определения и обозначения...................................................1

4 Сущность метода....................................................................2

5 Оборудование и материалы...........................................................4

6 Подготовка к проведению испытаний....................................................11

7 Проведение испытаний..............................................................12

8 Обработка результатов испытаний.....................................................13

9 Протокол испытаний.................................................................13

Приложение ДА (справочное) Оригинальный текст невключенных структурных элементов

примененного стандарта АСТМ...........................................15

Приложение ДБ (справочное) Сопоставление структуры настоящего стандарта со структурой

примененного в нем стандарта АСТМ......................................18

Приложение ДВ (справочное) Сведения о соответствии ссылочного национального стандарта стандарту АСТМ. использованному в качестве ссылочного в примененном стандарте АСТМ.......................................................19


ГОСТ Р 57967-2017

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПОЗИТЫ

Определение теплопроводности твердых тел методом стационарного одномерного теплового потока с охранным нагревателем

Composites. Determination of thermal conductivity of soHds by stationary one-dimensional heat flow

with a guard heater technique

Дата введения - 2018-06-01

1 Область применения

1.1 Настоящий стандарт устанавливает определение теплопроводности однородных непрозрачных твердых полимерных, керамических и металлических композитов методом стационарного одномерного теплового потока с охранным нагревателем.

1.2 Настоящий стандарт предназначен для применения при испытании материалов, имеющих аффективную теплопроводность в диапазоне от 0,2 до 200 Вт/(м-К) в диапазоне температур от 90 К до 1300 К.

1.3 Настоящий стандарт может быть также применен при испытании материалов, имеющих эффективную теплопроводность вне указанных диапазонов с более низкой точностью.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 2769 Шероховатость поверхности. Параметры и характеристики

ГОСТ Р 8.585 Государственная система обеспечения единства измерений. Термопары. Номинальные статические характеристики преобразования

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная осыпка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1.1 теплопроводность /.. Вт/(м К): Отношение плотности теплового потока при стационарных условиях через единицу площади к единице градиента температуры е направлении, перпендикулярном к поверхности.

Издание официальное

ГОСТ Р 57967-2017

3.1.2 кажущаяся теплопроводность: При наличии других способов передачи тепла через мате* риал, кроме теплопроводности, результаты измерений, выполненных по настоящему методу испыта* ния. представляют собой кажущуюся или эффективную теплопроводность.

3.2 8 настоящем стандарте применены следующие обозначения:

3.2.1 X M (T), Вт/(м К) - теплопроводность эталонных образцов в зависимости от температуры.

3.2.2 Эци, Вт/(м К) - теплопроводность верхнего эталонного образца.

3.2.3 Xjj’. 8т/(м К) - теплопроводность нижнего эталонного образца.

3.2.4 эдТ), Вт/(м К) - теплопроводность испытуемого образца с поправкой на теплообмен в не* обходимых случаях.

3.2.5 Х"$(Т), Вт/{м К) - теплопроводность испытуемого образца, рассчитанная без учета поправки на теплообмен.

3.2.6 >у(7), Вт/(м К) - теплопроводность изоляции в зависимости от температуры.

3.2.7 Г, К - абсолютная температура.

3.2.8 Z, м - расстояние, измеренное от верхнего конца пакета.

3.2.9 /, м - длина испытуемого образца.

3.2.10 Г (, К - температура при Z r

3.2.11 q", Вт/м 2 - тепловой поток на единицу площади.

3.2.12 ЗХ ЬТ, др. - отклонения X. Г. др.

3.2.13 г А, м - радиус испытуемого образца.

3.2.14 г в, м - внутренний радиус охранной оболочки.

3.2.15 f 9 (Z), К - температура охранной оболочки в зависимости от расстояния Z.

4 Сущность метода

4.1 Общая схема метода стационарного одномерного теплового потока с использованием ох* ранного нагревателя показана на рисунке 1. Испытуемый образец с неизвестной теплопроводностью X s . имеющий предполагаемую удельную теплопроводность X s // s . устанавливают под нагрузкой между двумя эталонными образцами с теплопроводностью Х м, имеющими такую же площадь поперечного сечения и удельную теплопроводность Х^//^. Конструкция представляет собой пакет, состоящий из дискового нагревателя с испытуемым образцом и эталонными образцами с каждой стороны между нагревателем и теплоотводом. В исследуемом пакете создается градиент температуры, потери тепла сводятся к минимуму за счет использования продольного охранного нагревателя, имеющего приблизи* тельно тот же температурный градиент. Через каждый образец протекает примерно половина энергии. 8 равновесном состоянии коэффициент теплопроводности определяют исходя из измеренных гради* ентов температуры испытуемого образца и соответствующих эталонных образцов и теплопроводности эталонных материалов.

4.2 Прикладывают силу к пакету для обеспечения хорошего контакта между образцами. Пакет окружается изолирующим материалом с теплопроводностью Изоляция заключена в охранную обо* лочку с радиусом г 8 , находящуюся при температуре Т д (2). Устанавливают градиент температуры в пакете путем поддержания верхней части при температуре Т т и нижней части при температуре Т в. Температура T 9 (Z) обычно является линейным температурным градиентом, приблизительно соответствующим градиенту, установленному в исследуемом пакете. Может быть также использован изотермический охранный нагреватель с температурой T ? (Z). равной средней температуре испытуемого образца. Не рекомендуется использовать конструкцию измерительной ячейки прибора без охранных нагревателей из-за возможных больших тепловых потерь, особенно при повышенных температурах. В стационарном состоянии температурные градиенты вдоль участков вычисляют на основе измеренных температур вдоль двух эталонных образцов и испытуемого образца. Значение X" s без учета поправки на теплообмен вычисляют по формуле (условные обозначения приведены на рисунке 2).

Т 4 -Г 3 2 U 2 -Z, Z e -Z 5

где Г, - температура при Z,. К Т 2 - температура при Z 2 , К Г 3 - температура при Z 3 . К

ГОСТ Р 57967-2017

Г 4 - температура при Z 4 . К;

Г 5 - температура при Z s . К:

Г в - температура при Z e . К:

Z, - координата 1-го датчика температуры, м;

Zj - координата 2-го датчика температуры, м;

Z 3 - координата 3-го датчика температуры, м;

Z 4 - координата 4-го датчика температуры, м;

Z 5 - координата 5-го датчика температуры, м;

Z e - координата 6>го датчика температуры, м.

Такая схема является идеализированной, так как она не учитывает теплообмен между пакетом и изоляцией в каждой точке и равномерную передачу тепла на каждой границе раздела эталонных образцов и испытуемого образца. Погрешности, вызванные этими двумя допущениями, могут сильно изменяться. Из-за этих двух факторов должны быть предусмотрены ограничения на данный метод испытаний. если требуется достигнуть необходимой точности.

1 - градиент температуры в охранной оболочке: 2 - градиент температуры в пакете; 3 - термопара: 4 -- зажим.

S - верхним нагреватель. б - верхний эталонный образец: 7 - нижний эталонный образец, в - нижний нагревателе: в - холодильник. 10 - верхний охранный натреаатель: И - инжиии охранный нагреватель

Рисунок 1 - Схема типичного испытуемого пакета и охранной оболочки, показывающая соответствие градиентов температуры

ГОСТ Р 57967-2017

7

б

Холодил ьнж

Оаь оимшпрми

Изоляция; 2 - охранный нагреватель. Э - металлическая или керамическая охранная оболочка: 4 - нагреватель. S - эталонный образец, б - испытуемый образец, х - приблизительное расположение термопар

Рисунок 2 - Схема методе одномерного стационарного теплового потока с использованием охранного нагревателя с указанием возможных мест установки датчиков температуры

5 Оборудование и материалы

5.1 Эталонные образцы

5.1.1 Для эталонных образцов должны быть использованы эталонные материалы или стандарт* ные материалы с известными значениями теплопроводности. В таблице 1 приведены некоторые из общепризнанных эталонных материалов. Рисунок 3 показывает примерное изменение >. м с темпера* турой.

ГОСТ Р 57967-2017

Тйплофоаодоостъ, ЕГЛ^м-К)

Рисунок 3 - Справочные значения теплопроводности эталонных материалов

Примечание - Выбранньы для эталонных образцов материал должен иметь теплопроводность, наиболее близкую к теплопроводности измеряемого материала.

5.1.2 Таблица 1 не является исчерпывающей, и в качестве эталонных могут быть использованы другие материалы. Эталонный материал и источник значений Х м должны быть указаны в протоколе испытаний.

Таблица 1 - Справочные данные характеристик эталонных материалов

ГОСТ Р 57967-2017

Окончание таблицы 1

Таблица 2 - Теплопроводность электролитического железа

Температура. К

Теплопроводность. Вт/(м К)

ГОСТ Р 57967-2017

Таблица 3 - Теплопроводность вольфрама

Температура, К

Теплопроводность. 6т/(мК)

ГОСТ Р 57967-2017

Таблица 4 - Теплопроводность аустенитной стали

Температура. К

Теплопроводность, Вт/(м К)

ГОСТ Р 57967-2017

Окончание таблицы 4

5.1.3 Требования, предъявляемые к любым эталонным материалам, включают стабильность свойств во всем диапазоне температур эксплуатации, совместимость с другими компонентами измерительной ячейки прибора, легкость крепления датчика температуры и точно известную теплопроводность. Поскольку погрешности из-за потерь тепла для конкретного увеличения к, пропорциональны изменению к и Jk s , для эталонных образцов следует использовать эталонный материал с). м. наиболее близкой к >. s .

5.1.4 Если теплопроводность испытуемого образца k s находится между значениями коэффициента теплопроводности двух эталонных материалов, следует использовать эталонный материал с более высокой теплопроводностью к и. чтобы уменьшить общее падение температуры вдоль пакета.

5.2 Изоляционные материалы

В качестве изоляционных материалов используют порошковые, дисперсные и волокнистые материалы для снижения радиального теплового потока в окружающее пакет кольцевое пространство и потерь тепла вдоль пакета. Необходимо учитывать несколько факторов при выборе изоляции:

Изоляция должна быть стабильной в ожидаемом диапазоне температур, иметь низкое значение теплопроводности к, и быть простой в обращении;

Изоляция не должна загрязнять компоненты измерительной ячейки прибора, такие как датчики температуры, она должна иметь низкую токсичность и не должка проводить электрический ток.

Обычно используют порошки и твердые частицы, так как их легко утрамбовать. Можно использовать волокнистые маты с низкой плотностью.

5.3 Датчики температуры

5.3.1 На каждом эталонном образце должно быть установлено не менее двух датчиков температуры и двух на испытуемом образце. По возможности эталонные образцы и испытуемый образец должны содержать три датчика температуры в каждом. Дополнительные датчики необходимы для подтверждения линейности распределения температуры вдоль пакета или выявления ошибки вследствие некалиброванности температурного датчика.

5.3.2 Тип датчика температуры зависит от размера измерительной ячейки прибора, диапазона температур и окружающей среды в измерительной ячейке прибора, определяемыми изоляцией, эталонными образцами, испытуемым образцом и газом. Для измерения температуры может быть использован любой датчик, обладающий достаточной точностью, и измерительная ячейка прибора должна быть достаточно большой, чтобы возмущение теплового потока от датчиков температуры было незначительным. Обычно используются термопары. Их небольшие размеры и легкость крепления составляют явные преимущества.

5.3.3 Термопары должны быть изготовлены из проволоки диаметром не более 0.1 мм. Для всех холодных спаев должна обеспечиваться постоянная температура. Эта температура поддерживается охлажденной суспензией, термостатом или электронной компенсацией опорной точки. Все термопары должны быть изготовлены либо из калиброванной проволоки, либо из проволоки, которая была сертифицирована поставщиком, чтобы обеспечить пределы погрешности, указанные в ГОСТ Р 8.585.

5.3.4 Методы крепления термопар приведены на рисунке 4. внутренние контакты могут быть получены в металлах и сплавах путем приваривания отдельных термоэлементов к поверхностям (рисунок 4а). Спаи термопар, приваренные встык или с корольком могут быть жестко прикреплены с помощью ковки, цементирования или сварки в узких канавках или небольших отверстиях (рисунки 4Ь. 4с и 4

5.3.5 На рисунке 46 термопара находится в радиальном пазу, а на рисунке 4с термопара протягивается через радиальное отверстие в материале. 8 случае использования термопары в защитной оболочке или термопары, оба термоэлемента которой находятся в электрическом изоляторе с двумя

ГОСТ Р 57967-2017

отверстиями, может быть использовано крепление термопары, показанное на рисунке 4d. В последних трех случаях термопара должна быть термически соединена с твердой поверхностью подходящим клеем или высокотемпературным иементом. 8се четыре процедуры, показанные на рисунке 4. должны включать в себя закалку проводов на поверхностях, витки проволоки в изотермических зонах, тепловые заземления проводов на охранном кожухе или сочетание всех трех.

5.3.6 Поскольку неточность расположения датчика температуры приводит к большим погрешностям. особое внимание должно быть уделено определению правильного расстояния между датчиками и расчету возможной ошибки в результате какой-либо неточности.

в - внутренний сырной шое с разделенными термоэлементами, привариваемыми к испытуемому образцу или эталонным образцам таким образом, чтобы сигнал проходил через материал. 6 - радиальный паз на плоской поверхности крепления оголенного провода или датчика термопары с керамической изоляцией; с - небольшое радиальное отверстие, просверленное через испытуемый образец или эталонные образцы, и неизолированная (допускается, если материал представляет собой электрический изолятор) или изолированная термопара, протянутая через отверстие: d - небольшое радиальное отверстие, просверленное ■ испытуемом образце или эталонных образцах, и термопара, помещенная о отверстие

Рисунок 4 - Крепление термопар

Примечание - Во всех случаях, термоэлементы должны быть термически закалены или термически заземлены на охранную оболочку для минимизации погрешности измерения из-за теплового потока к или из горячего спая.

5.4 Система нагружения

5.4.1 Метод испытания требует равномерного переноса тепла через границу раздела эталонных образцов и испытуемого образца, когда датчики температуры находятся на расстоянии, лежащем в пределах г к от границы раздела. Для этого необходимо обеспечить равномерное контактное сопро-

ГОСТ Р 57967-2017

тиаление прилегающих зон эталонных образцов и испытуемого образца, которое может быть создано путем приложения осевой нагрузки в сочетании с проводящей средой на границах раздела. Не реко-мендуется проводить измерения в вакууме, если он не требуется дпя защитных целей.

5.4.2 При испытаниях материалов с низкой теплопроводностью используются тонкие испытуемые образцы, поэтому датчики температуры должны быть установлены близко к поверхности. В таких случаях на границах раздела должен быть введен очень тонкий слой высоко теплопроводящей жидкости, пасты, мягкой металлической фольги или экрана.

5.4.3 В конструкции измерительного прибора должны быть предусмотрены средства для наложения воспроизводимой и постоянной нагрузки одоль пакета с целью минимизации межфазных сопротивлений на границах раздела эталонных образцов и испытуемого образца. Нагрузка может быть приложена пневматически, гидравлически, действием пружины или расположением груза. Вышеуказанные механизмы приложения нагрузки являются постоянными при изменении температуры пакета. В некоторых случаях, прочность на сжатие испытуемого образца может быть настолько низкой, что приложенная сила должна быть ограничена весом верхнего эталонного образца. В этом случае особое внимание должно быть уделено погрешностям, которые могут быть вызваны плохим контактом, для чего датчики температуры необходимо располагать вдали от любого возмущения теплового потока на границах раздела.

5.5 Охранная оболочка

5.5.1 Пакет, состоящий из испытуемого образца и эталонных образцов, должен быть заключен в защитную оболочку с правильной круговой симметрией. Охранная оболочка может быть металлической или керамической, и ее внутренний радиус должен быть таким, чтобы отношение г^г А находилось в диапазоне от 2.0 до 3.5. Охранная оболочка должна содержать, по меньшей мере, один охранный нагреватель для регулирования температурного профиля одоль оболочки.

5.5.2 Охранная оболочка должна быть сконструирована и функционировать таким образом, чтобы температура ее поверхности была либо изотермической и приблизительно равной средней температуре испытуемого образца, либо иметь приблизительный линейный профиль, согласованный на верхнем и нижнем концах охранной оболочки с соответствующими позициями одоль пакета. В каждом случае не менее трех датчиков температуры должно быть установлено на охранной оболочке в предварительно закоординироеанных точках (см. рисунок 2) для измерения профиля температуры.

5.6 Измерительное оборудование

5.6.1 Сочетание температурного датчика и измерительного прибора, используемого для измерения выходного сигнала датчика, должно быть адекватным для обеспечения точности измерения температуры ± 0.04 К и абсолютной погрешности менее ± 0.5 %.

5.6.2 Измерительное оборудование дпя данного метода должно поддерживать требуемую температуру и измерение всех соответствующих выходных напряжений с точностью, соразмерной с точностью измерения температуры температурными датчиками.

6 Подготовка к проведению испытаний

6.1 Требования к испытуемым образцам

6.1.1 Испытуемые образцы, исследуемые по данному методу, не ограничиваются конфетной геометрией. Наиболее предпочтительно использование цилиндрических или призматических образцов. Области проводимости испытуемою образца и эталонных образцов должны быть одинаковыми с точностью до 1 % и любое отличие в площади должно быть принято во внимание при расчетах результата. Для цилиндрической конфигурации радиусы испытуемого образца и эталонных образцов должны согласовываться с точностью до ± 1 %. а радиус испытуемою образца г А должен быть таким, чтобы r B fr A составлял от 2.0 до 3.5. Каждая плоская поверхность испытуемою и эталонного образцов должна быть плоской с шероховатостью поверхности не более чем R a 32 в соответствии с ГОСТ 2789. и нормали к каждой поверхности должны быть параллельны оси образца с точностью до ± 10 мин.

Прим еча н и е - В некоторых случаях это требование не является необходимым. Например, некоторые приборы могут состоять из эталонных образцов и испытуемых образцов с высокими значениями >. м и >. s . где ошибки из-за потерь тепла незначительны для длинных секций. Такие секции могут иметь достаточную длину, позволя

ГОСТ Р 57967-2017

ющую крепить датчики температуры на достаточном расстоянии от мест контакта, тем самым обеспечивая равномерность теплового потока. Длина испытуемого образца должна быть выбрана на основе сведений о радиусе и теплопроводности. Когда). и выше, чем теплопроводность нержавеющей стали, могут использоваться длинные испытуемые образцы с длиной 0г А » 1. Такие длинные испытуемые образцы позволяют использовать большие расстояния между датчиками температуры, и это снижает ошибку, получаемую из-за неточности в расположении датчика. Когда). м ниже, чем теплопроводность нержавеющей стали, длина испытуемого образца должна быть уменьшена, так как погрешность измерения из-за потерь тепла становится слишком большой.

6.1.2 Если иное не установлено в нормативном документе или технической документации на материал. для проведения испытаний используют один испытуемый образец.

6.2 Настройка оборудования

6.2.1 Калибровка и поверка оборудования выполняется в следующих случаях:

После сборки оборудования:

Если отношение Х м к X s меньше, чем 0,3. или больше, чем 3. и подобрать значения теплопроводностей не представляется возможным;

Если форма испытуемого образца является сложной или испытуемый образец мал:

Если были внесены изменения в геометрические параметры измерительной ячейки прибора;

Если было принято решение использовать материалы эталонных образцов или изоляции, отличные от приведенных в разделах 6.3 и 6.4:

Если оборудование ранее функционировало до достаточно высокой температуры, при которой могут измениться свойства компонентов, такие как. например, чувствительность термопары.

6.2.2 Указанные проверки должны проводиться путем сравнения не менее двух эталонных материалов следующим образом:

Выбрать эталонный материал, теплопроводность которого наиболее близка к предполагаемой теплопроводности испытуемого образца:

Теплопроводность X испытуемого образца, изготовленного из эталонного материала, измеряется с помощью эталонных образцов, изготавливаемых из другого эталонного материала, который имеет значение X. самое близкое к значению испытуемого образца. Например, проверку можно провести на образце ситалла. используя эталонные образцы, изготовленные из нержавеющей стали. Если измеренная теплопроводность образца не согласуется с значением из таблицы 1 после применения поправки на теплообмен, необходимо определить источники погрешностей.

7 Проведение испытаний

7.1 Выбирают эталонные образцы, чтобы их термическая проводимость была того же порядка величин, который ожидается для испытуемого образца. После оснащения необходимых эталонных образцов температурными датчиками и их установки в измерительную ячейку, испытуемый образец оснащают аналогичными средствами. Испытуемый образец вставляют в пакет таким образом, чтобы он помещался между эталонными образцами и контактировал с соседними эталонными образцами как минимум 99 % площади каждой поверхности. Для снижения поверхностного сопротивления может использоваться мягкая фольга или другая контактная среда. Если измерительная ячейка должна быть защищена от окисления во время испытания, или если измерение требует определенного газа или давления газа для контроля X /t то измерительная ячейка наполняется и продувается рабочим газом с установленным давлением. Для нагрузки пакета следует применять силу, необходимую для уменьшения эффектов неравномерного термического сопротивления на границе раздела фаз.

7.2 Включают верхний и нижний нагреватели на обоих концах пакета и регулируют до тех пор. пока разности температур между точками 2, и Zj. Z3 и Z 4 . а также Z s и 2^ не будут больше 200-кратной погрешности датчика температуры, но не более 30 К. и испытуемый образец не будет находиться при средней температуре, требуемой для измерения. Несмотря на то. что точный профиль температуры вдоль охранной оболочки не требуется для 3. мощность охранных нагревателей регулируют до тех лор, пока профиль температуры вдоль оболочки T g }