Кто впервые изложил суть закона инерции. Инерции закон

Из повседневного опыта мы можем подтвердить следующее умозаключение: скорость и направление движения тела могут меняться лишь во время его взаимодействия с другим телом. Это порождает явление инерции, о котором мы и поговорим в этой статье.

Что такое инерция? Пример жизненных наблюдений

Рассмотрим случаи, когда какое-нибудь тело на начальном этапе эксперимента уже пребывает в движении. Позже мы увидим, что уменьшение скорости и остановка тела не могут происходить самовольно, ведь причиной тому является действие на него другого тела.

Вы, наверное, не единожды наблюдали, как пассажиры, которые едут в транспорте, вдруг наклоняются вперед во время торможения или прижимаются на бок на крутом повороте. Почему? Объясним далее. Когда, к примеру, спортсмены пробегают определенную дистанцию, они пытаются развить максимальную скорость. Пробежав финишную черту, уже можно и не бежать, однако нельзя резко остановиться, а поэтому спортсмен пробегает еще несколько метров, то есть совершает движение по инерции.

Из вышеперечисленных примеров можно сделать вывод, что все тела имеют особенность сохранять скорость и направление движения, не будучи в состоянии при этом мгновенно их изменить впоследствии действия иного тела. Можно предположить, что при отсутствии внешнего действия тело сохранит и скорость, и направление движения как угодно долго. Итак, что такое инерция? Это явление сохранения скорости движения тела при отсутствии воздействия на него других тел.

Открытие инерции

Такое свойство тел открыл итальянский ученый Галилео Галилей. На основе своих экспериментов и рассуждений он утверждал: ежели тело не взаимодействует с иными телами, то оно либо пребывает в состоянии спокойствия, либо движется прямолинейно и равномерно. Его открытия вошли в науку как Закон инерции, однако более детально сформулировал его Рене Декарт, а уж Исаак Ньютон внедрил в свою систему законов.

Интересный факт: инерция, определение которой привел нам Галилей, рассматривалась еще в Древней Греции Аристотелем, но из-за недостаточного развития науки, точной формулировки приведено не было. гласит: существуют такие
системы отсчета, относительно которых тело, которое движется поступательно, сохраняет свою скорость постоянной, если на него не действуют иные тела. Формула инерции в едином и обобщенном виде отсутствует, но ниже мы приведем множество иных формул, раскрывающих ее особенности.

Инертность тел

Все мы знаем, что автомобиля, поезда, корабля или других тел увеличивается постепенно, когда они начинают двигаться. Все вы видели запуск ракет по телевизору или взлет самолетов в аэропорту - они увеличивают скорость не рывками, а постепенно. Наблюдения, а также повседневная практика говорят о том, что все тела имеют общую особенность: скорость движения тел в процессе их взаимодействия меняется постепенно, а поэтому для их изменения необходимо некоторое время. Эта особенность тел получила название инертности.

Все тела инертны, но не у всех инертность одинакова. Из двух взаимодействующих тел она будет выше у того, которое обретет меньшее ускорение. Так, к примеру, при выстреле ружье приобретает меньшее ускорение, чем патрон. При взаимном отталкивании взрослого конькобежца и ребенка взрослый получает меньшее ускорение, чем ребенок. Это свидетельствует о том, что инертность взрослого человека больше.

Для характеристики инертности тел ввели особенную величину - массу тела, ее принято обозначать буквой m . Дабы иметь возможность сравнивать массы различных тел, массу кого-нибудь из них необходимо учесть за единицу. Ее выбор может быть произвольным, однако она должна быть удобной для практического употребления. В системе СИ за единицу взяли массу специального эталона, изготовленного из твердого сплава платины и иридия. Она носит всем нам известное название - килограмм. Следует отметить, что инерция твердого тела бывает 2-х видов: поступательная и вращательная. В первом случае мерой инерции является масса, во втором - момент инерции, о котором мы поговорим позже.

Момент инерции

Так называют скалярную физическую величину. В системе СИ единицей измерения момента инерции является кг*м 2 . Обобщенная формула следующая:

Здесь m i - это масса точек тела, r i - это расстояние от точек тела до оси z в пространственной системе координат. В словесной интерпретации можно сказать так: момент инерции определяется суммой произведений элементарных масс, умноженных на квадрат расстояния до базового множества.

Есть и другая формула, характеризующая определение момента инерции:

Здесь dm - масса элемента, r - расстояние от элемента dm до оси z . Словесно можно сформулировать так: момент инерции системы материальных точек или тела относительно полюса (точки) - это алгебраическая сумма произведения масс материальных точек, составляющих тело, на квадрат расстояния их до полюса 0.

Стоит упомянуть, что существует 2 вида моментов инерции - осевые и центробежные. Есть также такое понятие, как главные моменты инерции (ГМИ) (относительно главных осей). Как правило, они всегда различны между собой. Ныне можно рассчитать моменты инерции для многих тел (цилиндра, диска, шара, конуса, сферы и проч.), однако не будем углубляться в уточнение всех формул.

Системы отсчета

В 1-ом законе Ньютона шла речь о равномерном прямолинейном движении, которое можно рассматривать только в определенной системе отсчета. Даже приближенный анализ механических явлений показывает, что закон инерции выполняется далеко не во всех системах отсчета.

Рассмотрим простой эксперимент: положим мяч на горизонтальный столик в вагоне и понаблюдаем за его движением. Если поезд будет находиться в состоянии спокойствия относительно Земли, то и мяч сохранит спокойствие до тех пор, пока мы не подействуем на него иным телом (например, рукой). Следовательно, в системе отсчета, что связана с Землей, закон инерции выполняется.

Представим, что поезд будет ехать относительно Земли равномерно и прямолинейно. Тогда в системе отсчета, что связана с поездом, мяч сохранит состояние спокойствия, а в той, что связана с Землей, - состояние равномерного и прямолинейного движения. Следовательно, закон инерции выполняется не только в системе отсчета, связанной с Землей, но и во всех других, движущихся относительно Земли равномерно и прямолинейно.

Теперь представим, что поезд быстро набирает скорость либо круто поворачивает (во всех случаях он движется с ускорением относительно Земли). Тогда, как и раньше, мяч сохраняет равномерное и которое он имел до начала ускорения поезда. Однако относительно поезда мяч сам по себе выходит из состояния спокойствия, хотя и нет тел, которые бы выводили его из него. Это значит, что в системе отсчета, связанной с ускорением движения поезда относительно Земли, закон инерции нарушается.

Итак, системы отсчета, в которых выполняется закон инерции, получили название инерциальных. А те, в которых не выполняется, - неинерциальных. Определить их просто: если тело движется равномерно и прямолинейно (в отдельных случаях - это спокойствие), то система инерциальная; если движение неравномерное - неинерциальная.

Сила инерции

Это довольно многозначное понятие, а поэтому попытаемся как можно более детально его рассмотреть. Приведем пример. Вы спокойно стоите в автобусе. Внезапно он начинает двигаться, а значит, набирает ускорение. Вы мимо воли отклонитесь назад. Но почему? Кто вас потянул? С точки зрения наблюдателя на Земле вы остаетесь на месте, при этом выполняется 1-ый закон Ньютона. С точки зрения наблюдателя в самом автобусе, вы начинаете двигаться назад, будто под какой-либо силой. На самом деле ваши ноги, которые связаны силами трения с полом автобуса, поехали вперед вместе с ним, а вам,
теряя равновесие, пришлось падать назад. Таким образом, для описания движения тела в неинерциальной системе отсчета необходимо вводить и учитывать дополнительные силы, что действуют со стороны связей тела с такой системой. Эти силы и есть силы инерции.

Необходимо учесть, что они фиктивны, ибо нет ни единого тела либо поля, под действием которого вы начали двигаться в автобусе. Законы Ньютона на силы инерции не распространяются, однако их использование наряду с "настоящими" силами позволяет описывать движение у произвольных неинерциальных систем отсчета при помощи различных инструментов. В этом состоит весь смысл ввода сил инерции.

Итак, теперь вы знаете, что такое инерция, момент инерции и инерциальные системы, силы инерции. Двигаемся далее.

Поступательное движение систем

Пусть на некое тело, находящееся в неинерциальной системе отсчета, движущееся с ускорением а 0 относительно инерциальной, действует сила F. Для такой неинерциальной системы уравнение-аналог второго закона Ньютона имеет вид:

Где а 0 - это ускорение тела с массой m , что вызвано действием силы F относительно неинерциальной системы отсчета; F ін - сила инерции. Сила F в правой части является «настоящей» в том понимании, что это результирующая взаимодействия тел, зависящая только от разности координат и скоростей взаимодействующих материальных точек, которые не меняются при переходе от одной системы отсчета к другой, движущейся поступательно. Поэтому не меняется и сила F. Она инвариантна относительно такого перехода. А вот F ін возникает не по причине а из-за ускоренного движения системы отсчета, из-за чего она меняется при переходе к другой ускоренной системе, поэтому не является инвариантной.

Центробежная сила инерции

Рассмотрим поведение тел в неинерциальной системе отсчета. XOY вращается относительно инерциальной системы, коей будем считать Землю, с постоянной угловой скоростью ω. Примером может послужить система на рисунке ниже.

Выше изображен диск, где закреплен радиально направленный стержень, а также надет синий шарик, "привязанный" к оси диска эластичной веревкой. Пока диск не вращается, веревка не деформируется. Однако при раскручивании диска шарик понемногу растягивает веревку до тех пор, пока сила упругости F ср не станет такой, что равна произведению массы шарика m на ее нормальное ускорение a п = -ω 2 R, то есть F ср = -mω 2 R , где R - это радиус круга, который описывает шарик при вращении вокруг системы.

Ежели угловая скорость ω диска останется постоянной, то и шарик прекратит движение относительно оси OX. В этом случае относительно системы отсчета XOY, которая связана с диском, шарик будет находиться в состоянии спокойствия. Это объяснится тем, что в этой системе, помимо силы F ср, на шарик действует сила инерции F cf , которая направлена вдоль радиуса от оси вращения диска. Сила, имеющая вид, как в формуле, представленной ниже, называется инерции. Возникать она может только во вращающихся системах отсчета.

Сила Кориолиса

Оказывается, когда тела двигаются относительно вращающихся систем отсчета, на них, помимо центробежной силы инерции, действует еще одна сила - Кориолиса. Она всегда перпендикулярна к вектору скорости тела V, а это означает, что она не выполняет никакой работы над этим телом. Подчеркнем, что сила Кориолиса проявляет себя лишь тогда, когда тело движется относительно неинерциальной системы отсчета, которая осуществляет вращение. Ее формула выглядит следующим образом:

Поскольку выражение (v*ω) является векторным произведением приведенных в скобках векторов, то можно прийти к выводу, что направление силы Кориолиса определяется правилом буравчика по отношению к ним. Ее модуль равен:

Здесь Ө - это угол между векторами v и ω .

В заключение

Инерция - это удивительное явление, которое ежедневно преследует каждого человека сотни раз, пусть мы и сами не замечаем этого. Думаем, что статья дала вам важные ответы на вопросы о том, что такое инерция, что такое сила и моменты инерции, кто открыл явление инерции. Уверены, вам было интересно.

Что такое теория относительности Ландау Лев Давидович

Закон инерции

Закон инерции

Из принципа относительности движения вытекает, что тело, на которое не действует никакая внешняя сила, может находиться не только в состоянии покоя, но и в состоянии прямолинейного равномерного движения. Это положение в физике называется законом инерции.

Однако в повседневной жизни он как бы завуалирован и непосредственно не проявляется. Ведь по закону инерции тело, находящееся в состоянии прямолинейного равномерного движения, должно - и без воздействия внешних сил - продолжать свое движение без конца. Однако из наблюдений нам известно, что тела, к которым мы силы не прилагаем, останавливаются.

Разгадка заключается в том, что на все тела, наблюдаемые нами, действуют некоторые внешние силы - силы трения. Поэтому условие, необходимое для наблюдения закона инерции - отсутствие внешних сил, действующих на тело, - не выполняется. Но, улучшая условия опыта, уменьшая силы трения, можно приблизиться к идеальным условиям, необходимым для наблюдения закона инерции, доказав, таким образом, правильность этого закона и для движений, наблюдаемых в повседневной жизни.

Открытие принципа относительности движения является одним из величайших открытий. Без него развитие физики было бы невозможно. Этим открытием мы обязаны гению Галилео Галилея, смело выступившего против господствовавшего в те времена и поддерживаемого авторитетом католической церкви учения Аристотеля, согласно которому движение возможно только при наличии силы и без нее должно неминуемо прекратиться. Рядом блестящих опытов Галилей показал, что причиной остановки движущихся тел, наоборот, является сила трения и в отсутствие этой силы приведенное раз в движение тело двигалось бы вечно.

Из книги Физики продолжают шутить автора Конобеев Юрий

Закон Мэрфи Дональд МИЧИ Я думаю, что самое глубокое и прочное впечатление в своей жизни каждый научный работник получает от того, как неожиданно, как несправедливо, как удручающе трудно хоть что-нибудь открыть или доказать. Многих осложнений и разочарований можно было

Из книги Физическая химия: конспект лекций автора Березовчук А В

7. Закон Генри Фугитивность растворителя в разбавленном растворе не зависит от природы растворенного вещества и вычисляется по закону Рауля, то есть: Так как фугитивность жидкости или твердого раствора равна фугитивности насыщенного пара, когда растворитель в

Из книги Тайны пространства и времени автора Комаров Виктор

2. Закон Гесса При изобарных и изохорных условиях теплота является функцией состояния.В 1840 г. Г. Н. Гесс формулирует закон: «Тепловой эффект химической реакции не зависит от промежуточных стадий, а зависит только от начального и конечного состояния системы».?QP = dH,?QV = dUвн,QP =

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Из книги История лазера автора Бертолотти Марио

Закон сохранения массы Если растворить сахар в воде, то масса раствора будет строго равна сумме масс сахара и воды.Этот и бесчисленное количество подобных опытов показывают, что масса тела есть неизменное свойство. При любом дроблении и при растворении масса остается

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Закон инерции Не приходится спорить – инерциальная система отсчета удобна и обладает неоценимыми преимуществами.Но единственная ли это система или, может быть, существует много инерциальных систем? Древние греки, например, стояли на первой точке зрения. В их сочинениях

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Закон сохранения импульса Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением

Из книги автора

Центр инерции Вполне законно задать вопрос: где находится центр тяжести группы тел? Если на плоту много людей, то от места нахождения их общего центра тяжести (вместе с плотом) будет зависеть устойчивость плота.Смысл понятия остается тем же. Центр тяжести есть точка

Из книги автора

Закон Архимеда Подвесим гири к безмену. Пружина растянется и покажет вес гири. Не снимая гири с безмена, опустим ее в воду. Изменится ли показание безмена? Да, вес тела как бы уменьшится. Если опыт проделать с килограммовой железной гирей, то «уменьшение» веса составит

Из книги автора

Закон Авогадро Пусть вещество представляет собой смесь различных молекул. Нет ли такой физической величины, характеризующей движение, которая была бы одинакова для всех этих молекул, например для водорода и кислорода, находящихся при одинаковой температуре?Механика

Из книги автора

Закон преломления В работе Dioptrique Декарт излагает свою теорию света, основанную на вихрях, и обсуждает законы отражения и преломления, впервые выразив принцип, что отношение углов падения и преломления зависит от среды, через которую проходит свет.Уже греки знали, что

Из книги автора

Закон Рэлея К концу 1899 г. были проведены более точные измерения в области более длинных волн, которые показали, что в этой области закон Вина уже несправедлив. В июне того же года лорд Рэлей (который был при рождении Джоном Вильямом Стрэтгом (1842-1919)) опубликовал вывод закона

Из книги автора

Закон Планка Теоретическая ситуация, как описывают, была следующей. Когда в воскресенье 7 октября 1900 г. X. Рубенс со своей женой посетил Планков, он рассказал Планку об измерениях на длинах волн до 50 мкм, которые он произвел вместе с Ф. Курлбаумом в Берлинском институте. Эти

Из книги автора

Из книги автора

Закон красного смещения Эта история началась с замечательного открытия, сделанного в 1908 году Генриеттой Ливитт, которая тогда не была еще астрономом. Она смотрела не вверх, в звездное небо, а вниз - на фотопластинки, сделанные в Гарвардской обсерватории за много лет. В те

Из книги автора

Закон Ньютона Закон всемирного тяготения после обсуждения в третьем чтении был отправлен на доработку… Фольклор Проверка закона Ньютона. Осмысление закона Ньютона до сих пор играет очень важную роль для осмысления представлений о гравитации вообще. Как можно

2014-05-26

Результаты экспериментов Галилея свидетельствовали о том, что чем меньше сопротивление движению, тем меньше изменение скорости и тем дольше движется шарик. Размышляя над такими результатами, Галилей пришел гениальному выводу: при полном отсутствии силы трения или сопротивления скорость тела постоянна, и для поддержания движения не нужно прилагать никакой силы. Математически это можно записать так: = const, если = const. Явление сохранения телом скорости при отсутствии внешних воздействий на него со стороны других тел называют инерцией, а это свойство тела — инертностью. А закон, открытый Галилеем, называют законом инерции и формулируют так: если на тело не действуют другие тела, оно движется прямолинейно и равномерно или находится в состоянии покоя.

Отметим, что физический смысл закона инерции заключается в том, что свободные друг относительно друга материальные точки (материальные точки, на которые не действуют другие тела) движутся прямолинейно и равномерно.

О том, что телу свойственно хранить любое движение, а именно прямолинейный, свидетельствует такой опыт (рис. 2). Шарик движется прямолинейно по плоской горизонтальной поверхности, сталкиваясь с препятствием, которое имеет криволинейную форму, под действием этого препятствия вынуждена двигаться по дуге. Однако когда шарик доходит до конца препятствия, она перестает двигаться криволинейно и снова начинает двигаться по прямой.

Рассматривая механические движения в доме на берегу моря и в каюте корабля, Г. Галилей обнаружил, что они осуществляются одинаково, когда корабль плывет по гладкой поверхности без ускорения. Очень важным для всего последующего развития физики оказалось утверждение Галилея о том, что никакими механическими опытами, которые проводятся внутри инерционной системы отсчета (для пассажира ней есть каюта корабля), невозможно установить, находится эта система в покое, или движется равномерно и прямолинейно. Это утверждение называют принципом относительности Галилея. Человек в каюте корабля может установить факт движения только тогда, когда она будет наблюдать внешние тела: остров, берег моря и т.д..

Инерционными Ньютон назвал такие системы, для которых единственным источником ускорения есть сила, то есть взаимодействие с другими телами. Системы отсчета, которые движутся относительно инерциальных систем с ускорением (поступательно или вращательно), он назвал неинерциальных. Ньютон, рассматривая инерциальную систему отсчета (ИСО), так и не смог указать тело, которое было бы для нее телом отсчета. Окружающие тела движутся ускоренно: дом вращается вокруг оси Земли, а вместе с ее поверхностью — вокруг Солнца. Системы отсчета, связанные с окружающими телами, неинерциальные, но их ускорения в основном очень малы. Ускорение автобуса составляет около 1 м/с2, большого корабля — несколько cм/с2, Земли — 6 мм/с2, Солнца — около 10-4 см/с2. Соответственно, чем больше масса тела отсчета, тем меньше его ускорение. Поэтому ИСО — это абстрактное понятие, если бы она существовала, то имела бы бесконечно большую массу. Очевидно, что наибольшую массу из тел, окружающих нас, имеет Солнце, поэтому связанная с ним система отсчета почти инерционной. В этой ИСО начало отсчета координат совмещают с центром Солнца, а координаты осей проводят в направлении реальных звезд, которые можно считать неподвижными.

Однако для описания многих механических явлений с земных условий ИСО связывают с Землей, пренебрегая при этом вращательными движениями Земли вокруг своей оси и вокруг Солнца. Например, изучая свободное падение, нужно было бы учитывать ускорение лаборатории (2-3 см/с2), поскольку Земля вращается вокруг своей оси. Но ускорение лаборатории в несколько сотен раз меньше ускорения свободного падения, поэтому им обычно пренебрегают. В большинстве задач Землю считают идеальным телом отсчета, а связанные с ней системы — инерционными.

Сейчас понятно, что абсолютно неподвижных тел или тел, которые движутся строго равномерно и прямолинейно, в природе не существует, поэтому инерционная система отсчета — такая же абстракция, как и материальная точка или абсолютно твердое тело. Инерционными системами отсчета называют системы, относительно которых тело движется равномерно прямолинейно или находится в покое. Время во всех ИСО измеряют одинаково. Масса тела m = const, его ускорения и силы взаимодействия не зависят от скорости ИСО. В любых ИСО все механические явления происходят одинаково при одних и тех же начальных условиях (другая формулировка принципа относительности Галилея).

Выпуск 18

Восемнадцатая серия видеоуроков физики посвящена одному из законов, открытому великим Исааком Ньютоном, а именно — закону инерции Ньютона. Во многом благодаря действию этого закона, наш мир таков, каким мы привыкли его видеть. Также Даниил Эдисонович расскажет юным телезрителям о силе трения, которая также вносит немалый вклад в устройство нашего мироздания.

Закон инерции Ньютона

Инерция — основное свойство материальных тел. А вы знаете, в чём оно заключается? В одной из прошлых передач Даниил Эдисонович рассказывал о таком физическом понятии, как масса. Масса — это мера инертности тела. То есть, инерция напрямую зависит от массы. Закон инерции Ньютона называют ещё Первым законом Ньютона. Свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна инерция, то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы. Иными словами, существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения. Системы отсчёта, в которых выполняется закон инерции Ньютона, называют инерциальными системами отсчёта (ИСО). Явлением инерции также является возникновение фиктивных сил инерции в неинерциальных системах отсчета. Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю), которая гласила, что свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы. Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов. Инерция — это не только стремление тела к сохранению покоя, но и стремление сохранить движение, если уж оно начало двигаться. А что ещё мешает телу двигаться, кроме силы инерции? Может быть, вам уже приходилось слышать о трении? Трение — это сила, которая возникает при взаимодействии поверхности одного тела с поверхностью другого тела. Также трение возникает при движении тела в газообразной или жидкой среде. Сила трения — это сила, возникающая в месте соприкосновения тел и препятствующая их относительному движению. Причинами возникновения силы трения являются шероховатость соприкасающихся поверхностей и взаимное притяжение молекул этих поверхностей.