Энергия молекулярных связей. Энергия разрыва химической связи. Ковалентная связь обладает свойствами


В большинстве случаев при образовании связи происходит обобществление электронов связываемых атомов. Такой тип химической связи называют ковалентной связью (приставка "ко-" в латинском языке означает совместность, "валенс" - имеющий силу). Связывающие электроны находятся преимущественно в пространстве между связываемыми атомами. За счет притяжения ядер атомов к этим электронам образуется химическая связь. Таким образом, ковалентная связь - это химическая связь, возникающая за счет увеличения электронной плотности в области между химически связанными атомами.

Первая теория ковалентной связи принадлежит американскому физикохимику Г.-Н. Льюису . В 1916 г. он предположил, что связи между двумя атомами осуществляется парой электронов, при этом вокруг каждого атома обычно формируется восьмиэлектронная оболочка (правило октета).

Одно из существенных свойств ковалентной связи - ее насыщаемость. При ограниченном числе внешних электронов в областях между ядрами образуется ограниченное число электронных пар вблизи каждого атома (и, следовательно, число химических связей). Именно это число тесно связано с понятием валентности атома в молекуле (валентностью называют общее число ковалентных связей, образуемых атомом). Другое важное свойство ковалентной связи - ее направленность в пространстве. Это проявляется в примерно одинаковом геометрическом строении близких по составу химических частиц. Особенностью ковалентной связи является также ее поляризуемость.

Для описания ковалентной связи используют преимущественно два метода, основанных на разных приближениях при решении уравнения Шредингера: метод молекулярных орбиталей и метод валентных связей. В настоящее время в теоретической химии используется почти исключительно метод молекулярных орбиталей. Однако метод валентных связей, несмотря на большую сложность вычислений, дает более наглядное представление об образовании и строении химических частиц.

Параметры ковалентной связи

Совокупность атомов, образующих химическую частицу, существенно отличается от совокупности свободных атомов. Образование химической связи приводит, в частности, к изменению радиусов атомов и их энергии. Происходит также перераспределение электронной плотности: повышается вероятность нахождения электронов в пространстве между связываемыми атомами.

Длина химической связи

При образовании химической связи всегда происходит сближение атомов - расстояние между ними меньше, чем сумма радиусов изолированных атомов:

r (A−B) r(A) + r (B)

Радиус атома водорода составляет 53 пм, атома фтора − 71 пм, а расстояние между ядрами атомов в молекуле HF равно 92 пм:

Межъядерное расстояние между химически связанными атомами называется длиной химической связи.

Во многих случаях длину связи между атомами в молекуле вещества можно предсказать, зная расстояния между этими атомами в других химических веществах. Длина связи между атомами углерода в алмазе равна 154 пм, между атомами галогена в молекуле хлора - 199 пм. Полусумма расстояний между атомами углерода и хлора, рассчитанная из этих данных, составляет 177 пм, что совпадает с экспериментально измеренной длиной связи в молекуле CCl 4 . В то же время это выполняется не всегда. Например, расстояние между атомами водорода и брома в двухатомных молекулах составляет 74 и 228 пм, соответственно. Среднее арифметическое этих чисел составляет 151 пм, однако реальное расстояние между атомами в молекуле бромоводорода равно 141 пм, то есть заметно меньше.

Расстояние между атомами существенно уменьшается при образовании кратных связей. Чем выше кратность связи, тем короче межатомное расстояние .

Длины некоторых простых и кратных связей

Валентные углы

Направление ковалентных связей характеризуется валентными углами - углами между линиями, соединяющими связываемые атомы. Графическая формула химической частицы не несет информации о валентных углах. Например, в сульфат-ионе SO 4 2− валентные углы между связями сера−кислород равны 109,5 o , а в тетрахлоропалладат-ионе 2− − 90 o . Совокупность длин связей и валентных углов в химической частице определяет ее пространственное строение. Для определения валентных углов используют экспериментальные методы изучения структуры химических соединений. Оценить значения валентных углов можно теоретически, исходя из электронного строения химической частицы.

Энергия ковалентной связи

Химическое соединение образуется из отдельных атомов только в том случае, если это энергетически выгодно. Если силы притяжения преобладают над силами отталкивания, потенциальная энергия взаимодействующих атомов понижается, в противном случае − повышается. На некотором расстоянии (равном длине связи r 0) эта энергия минимальна.


Таким образом, при образовании химической связи энергия выделяется, при ее разрыве − поглощается. Энергия E 0 , необходимая для того, чтобы разъединить атомы и удалить их друг от друга на расстояние, на котором они не взаимодействуют, называется энергией связи . Для двухатомных молекул энергия связи определяется как энергия диссоциации молекулы на атомы. Она может быть измерена экспериментально.

В молекуле водорода энергия связи численно равна энергии, которая выделяется при образовании молекулы Н 2 из атомов Н:

Н + Н = Н 2 + 432 кДж

Эту же энергию нужно затратить, чтобы разорвать связь Н-Н:

H 2 = H + H − 432 кДж

Для многоатомных молекул эта величина является условной и отвечает энергии такого процесса, при котором данная химическая связь исчезает, а все остальные остаются без изменения. При наличии нескольких одинаковых связей (например, для молекулы воды, содержащей две связи кислород−водород) их энергию можно рассчитать, используя закон Гесса . Величины энергии распада воды на простые вещества, а также энергии диссоциации водорода и кислорода на атомы известны:

2Н 2 О = 2Н 2 + О 2 ; 484 кДж/моль

Н 2 = 2Н; 432 кДж/моль

О 2 = 2О; 494 кДж/моль

Учитывая, что в двух молекулах воды содержится 4 связи, энергия связи кислород-водород равна:

Е (О−Н) = (2 . 432 + 494 + 484) / 4 = 460,5 кДж/моль

В молекулах состава AB n последовательный отрыв атомов В сопровождается определенными (не всегда одинаковыми) затратами энергии. Например, значения энергии (кДж/моль) последовательного отщепления атомов водорода от молекулы метана существенно различаются:

427 368 519 335
СН 4 СН 3 СН 2 СН С

При этом энергия связи А−В определяется как средняя величина затраченной энергии на всех стадиях:

СН 4 = С + 4Н; 1649 кДж/моль

Е (С−Н) = 1649 / 4 = 412 кДж/моль

Чем выше энергия химической связи, тем прочнее связь . Связь считается прочной, или сильной, если ее энергия превышает 500 кДж/моль (например, 942 кДж/моль для N 2), слабой - если ее энергия меньше 100 кДж/моль (например, 69 кДж/моль для NO 2). Если при взаимодействии атомов выделяется энергия менее 15 кДж/моль, то считают, что химическая связь не образуется, а наблюдается межмолекулярное взаимодействие (например, 2 кДж/моль для Xe 2). Прочность связи обычно уменьшается с увеличением ее длины.

Одинарная связь всегда слабее, чем кратные связи - двойная и тройная - между теми же атомами.

Энергии некоторых простых и кратных связей

Полярность ковалентной связи

Полярность химической связи зависит от разности электроотрицательностей связываемых атомов.

Электроотрицательность − условная величина, характеризующая способность атома в молекуле притягивать электроны. Если в двухатомной молекуле А−В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным.

Шкала электроотрицательности была использована Л. Полингом для количественной характеристики способности атомов к поляризации ковалентных связей. Для количественного описания электроотрицательности, помимо термохимических данных, используют также данные о геометрии молекул (метод Сандерсона) или спектральные характеристики (метод Горди). Широко используют также шкалу Олреда и Рохова, в которой при расчете используют эффективный заряд ядра и атомный ковалентный радиус. Наиболее ясный физический смысл имеет метод, предложенный американским физикохимиком Р. Малликеном (1896-1986). Он определил электроотрицательность атома как полусумму его сродства к электрону и потенциала ионизации. Значения электроотрицательности, базирующиеся на методе Малликена и распространенные на широкий круг разнообразных объектов, называют абсолютными.

Самое высокое значение электроотрицательности имеет фтор. Наименее электроотрицательный элемент - цезий. Чем выше значение разности электроотрицательностей двух атомов, тем более полярной является химическая связь между ними.

В зависимости от того, как происходит перераспределение электронной плотности при образовании химической связи, различают несколько ее типов. Предельный случай поляризации химической связи - полный переход электрона от одного атома к другому. При этом образуются два иона, между которыми возникает ионная связь. Для того чтобы два атома смогли создать ионную связь, необходимо, чтобы их электроотрицательности очень сильно различались. Если электроотрицательности атомов равны (при образовании молекул из одинаковых атомов), связь называют неполярной ковалентной . Чаще всего встречается полярная ковалентная связь - она образуется между любыми атомами, имеющими разные значения электроотрицательности.

Количественной оценкой полярности ("ионности") связи могут служить эффективные заряды атомов. Эффективный заряд атома характеризует разность между числом электронов, принадлежащих данному атому в химическом соединении, и числом электронов свободного атома. Атом более электроотрицательного элемента притягивает электроны сильнее. Поэтому электроны оказываются ближе к нему, и он получает некоторый отрицательный заряд, который называют и эффективным, а у его партнера появляется такой же положительный заряд. Если электроны, образующие связь между атомами, принадлежат им в равной степени, эффективные заряды равны нулю. В ионных соединениях эффективные заряды должны совпадать с зарядами ионов. А для всех других частиц они имеют промежуточные значения.

Лучший метод оценки зарядов атомов в молекуле - решение волнового уравнения. Однако это возможно лишь при наличии малого числа атомов. Качественно распределение заряда можно оценить по шкале электроотрицательности. Используют также различные экспериментальные методы. Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента:

μ = q r ,

где q − заряд полюса диполя, равный для двухатомной молекулы эффективному заряду, r − межъядерное расстояние.

Дипольный момент связи является векторной величиной. Он направлен от положительно заряженной части молекулы к ее отрицательной части. На основании измерения дипольного момента было установлено, что в молекуле хлороводорода HCl на атоме водорода имеется положительный заряд +0,2 доли заряда электрона, а на атоме хлора отрицательный заряд −0,2. Значит, связь H−Cl на 20% имеет ионный характер. А связь Na−Cl является ионной на 90%.

Лекция для учителей

Химическую связь (в дальнейшем – связь) можно определить как взаимодействие двух или нескольких атомов, в результате которого образуется химически устойчивая многоатомная микросистема (молекула, кристалл, комплекс и др.).

Учение о связи занимает центральное место в современной химии, поскольку химия как таковая начинается там, где кончается изолированный атом и начинается молекула. В сущности, все свойства веществ обусловлены особенностями связей в них. Главное отличие химической связи от других видов взаимодействия между атомами заключается в том, что ее образование определяется изменением состояния электронов в молекуле по сравнению с исходными атомами.

Теория связи должна дать ответы на ряд вопросов. Почему образуются молекулы? Почему одни атомы вступают во взаимодействие, а другие – нет? Почему атомы соединяются в определенных соотношениях? Почему атомы располагаются в пространстве определенным образом? И наконец, надо рассчитать энергию связи, ее длину и другие количественные характеристики. Соответствие теоретических представлений экспериментальным данным должно рассматриваться как критерий истинности теории.

Существует два основных метода описания связи, которые позволяют ответить на поставленные вопросы. Это методы валентных связей (ВС) и молекулярных орбиталей (МО). Первый более нагляден и прост. Второй более строг и универсален. По причине большей наглядности основное внимание здесь будет уделено методу ВС.

Квантовая механика позволяет описать связь, исходя из самых общих законов. Хотя различают пять видов связи (ковалентная, ионная, металлическая, водородная и связь межмолекулярного взаимодействия), связь едина по своей природе, а различия между ее видами – относительны. Суть связи в кулоновском взаимодействии, в единстве противоположностей – притяжения и отталкивания. Деление связи на виды и различие в методах ее описания указывает скорее не на разнообразие связи, а на недостаточность знаний о ней на современном этапе развития науки.

В этой лекции будет рассмотрен материал, относящийся к таким темам, как энергия химической связи, квантово-механическая модель ковалентной связи, обменный и донорно-акцепторный механизмы образования ковалентной связи, возбуждение атомов, кратность связи, гибридизация атомных орбиталей, электроотрицательность элементов и полярность ковалентной связи, понятие о методе молекулярных орбиталей, химическая связь в кристаллах.

Энергия химической связи

Согласно принципу наименьшей энергии, внутренняя энергия молекулы по сравнению с суммой внутренних энергий образующих ее атомов должна понижаться. Внутренняя энергия молекулы включает сумму энергий взаимодействия каждого электрона с каждым ядром, каждого электрона с каждым другим электроном, каждого ядра с каждым другим ядром. Притяжение должно превалировать над отталкиванием.

Важнейшей характеристикой связи является энергия, определяющая ее прочность. Мерой прочности связи может служить как количество энергии, затрачиваемой на ее разрыв (энергия диссоциации связи), так и величина, которая при суммировании по всем связям дает энергию образования молекулы из элементарных атомов. Энергия разрыва связи всегда положительна. Энергия образования связи по величине та же, но имеет отрицательный знак.

Для двухатомной молекулы энергия связи численно равна энергии диссоциации молекулы на атомы и энергии образования молекулы из атомов. Например, энергия связи в молекуле НВr равна количеству энергии, выделяющейся в процессе Н + Вr = НВr. Очевидно, что энергия связи НВr больше количества энергии, выделяющейся при образовании НВr из газообразного молекулярного водорода и жидкого брома:

1/2Н 2 (г.) + 1/2Вr 2 (ж.) = НBr (г.),

на величину энергии испарения 1/2 моль Вr 2 и на величины энергий разложения 1/2 моль Н 2 и 1/2 моль Вr 2 на свободные атомы.

Квантово-механическая модель ковалентной связи по методу валентных связей на примере молекулы водорода

В 1927 г. уравнение Шрёдингера было решено для молекулы водорода немецкими физиками В.Гейтлером и Ф.Лондоном. Это была первая удачная попытка применения квантовой механики к решению проблем связи. Их работа заложила основы метода валентных связей, или валентных схем (ВС).

Результаты расчета можно представить графически в виде зависимостей сил взаимодействия между атомами (рис. 1, а) и энергии системы (рис. 1, б) от расстояния между ядрами атомов водорода. Ядро одного из атомов водорода поместим в начало координат, а ядро второго будем приближать к ядру первого атома водорода вдоль оси абсцисс. Если спины электронов антипараллельны, силы притяжения (см. рис. 1, а, кривая I) и силы отталкивания (кривая II) будут нарастать. Результирующая этих сил представлена кривой III. Сначала преобладают силы притяжения, затем – отталкивания. Когда расстояние между ядрами становится равным r 0 = 0,074 нм, сила притяжения уравновешивается силой отталкивания. Равновесию сил соответствует минимальная энергия системы (см. рис. 1, б, кривая IV) и, следовательно, наиболее устойчивое состояние. Глубина «потенциальной ямы» представляет энергию связи Е 0 Н–Н в молекуле Н 2 при абсолютном нуле. Она составляет 458 кДж/моль. Однако при реальных температурах на разрыв связи требуется несколько меньшая энергия Е Н–Н, которая при 298К (25 °С) равна 435 кДж/моль. Разность этих энергий в молекуле Н2 является энергией колебаний атомов водорода (Е кол = Е 0 Н–Н – Е Н–Н = 458 – 435 = 23 кДж/моль).

Рис. 1. Зависимость сил взаимодействия атомов (а) и энергии системы (б)
от расстояния между ядрами атомов в молекуле Н 2

При сближении двух атомов водорода, содержащих электроны с параллельными спинами, энергия системы постоянно увеличивается (см. рис. 1, б, кривая V) и связь не образуется.

Таким образом, квантово-механический расчет дал количественное объяснение связи. При наличии у пары электронов противоположных спинов электроны двигаются в поле обоих ядер. Между ядрами появляется область с высокой плотностью электронного облака – избыточного отрицательного заряда, который стягивает положительно заряженные ядра. Из квантово-механического расчета следуют положения, являющиеся основой метода ВС:

1. Причиной связи является электростатическое взаимодействие ядер и электронов.
2. Связь образуется электронной парой с антипараллельными спинами.
3. Насыщаемость связи обусловлена образованием электронных пар.
4. Прочность связи пропорциональна степени перекрывания электронных облаков.
5. Направленность связи обусловлена перекрыванием электронных облаков в области максимальной электронной плотности.

Обменный механизм образования ковалентной связи по методу ВС. Направленность и насыщаемость ковалентной связи

Одним из важнейших понятий метода ВС является валентность. Численное значение валентности в методе ВС определяется числом ковалентных связей, которые атом образует с другими атомами.

Рассмотренный для молекулы Н 2 механизм образования связи парой электронов с антипараллельными спинами, принадлежавших до образования связи разным атомам, называется обменным. Если учитывать только обменный механизм, валентность атома определяется числом его неспаренных электронов.

Для молекул более сложных, чем Н 2 , принципы расчета остаются неизменными. К образованию связи приводит взаимодействие пары электронов с противоположными спинами, но с волновыми функциями одинакового знака, которые суммируются. Результатом этого является увеличение электронной плотности в области перекрывания электронных облаков и стягивание ядер. Рассмотрим примеры.

В молекуле фтора F 2 связь образована 2р-орбиталями атомов фтора:

Наибольшая плотность электронного облака у 2р-орбитали в направлении оси симметрии. Если неспаренные электроны атомов фтора находятся на 2р х -орбиталях, связь осуществляется в направлении оси х (рис. 2). На 2р y - и 2р z -орбиталях находятся неподеленные электронные пары, не участвующие в образовании связей (на рис. 2 заштрихованы). В дальнейшем такие орбитали изображать не будем.


Рис. 2. Образование молекулы F 2

В молекуле фтороводорода НF связь образована 1s-орбиталью атома водорода и 2р х -орбиталью атома фтора:

Направленность связи в этой молекуле определяется ориентацией 2рх-орбитали атома фтора (рис. 3). Перекрывание происходит в направлении оси симметрии х. Любой другой вариант перекрывания энергетически менее выгоден.


Рис. 3. Образование молекулы НF

Более сложные d- и f-орбитали также характеризуются направлениями максимальной электронной плотности вдоль осей их симметрии.

Таким образом, направленность – одно из основных свойств ковалентной связи.

Направленность связи хорошо иллюстрирует пример молекулы сероводорода Н 2 S:

Поскольку оси симметрии валентных 3р-орбиталей атома серы взаимно перпендикулярны, то следует ожидать, что молекула Н 2 S должна иметь уголковую структуру с углом между связями S–Н 90° (рис. 4). Действительно, угол близок к расчетному и равен 92°.


Рис. 4. Образование молекулы Н 2 S

Очевидно, что число ковалентных связей не может превышать числа образующих связи электронных пар. Однако насыщаемость как свойство ковалентной связи означает также, что если атом имеет некоторое количество неспаренных электронов, то все они должны участвовать в образовании ковалентных связей.

Это свойство объясняется принципом наименьшей энергии. При образовании каждой дополнительной связи выделяется дополнительная энергия. Поэтому все валентные возможности реализуются полностью.

Действительно, устойчива молекула Н 2 S, а не НS , где имеется нереализованная связь (неспаренный электрон обозначают точкой). Частицы, содержащие неспаренные электроны, называют свободными радикалами. Они чрезвычайно реакционноспособны и вступают в реакции с образованием соединений, содержащих насыщенные связи.

Возбуждение атомов

Рассмотрим валентные возможности по обменному механизму некоторых элементов 2-го и 3-го периодов периодической системы.

Атом бериллия на внешнем квантовом уровне содержит два спаренных 2s-электрона. Неспаренных электронов нет, поэтому бериллий должен иметь нулевую валентность. Однако в соединениях он двухвалентен. Это можно объяснить возбуждением атома, заключающимся в переходе одного из двух 2s-электронов на 2р-подуровень:

При этом затрачивается энергия возбуждения Е*, соответствующая разности энергий 2р- и 2s-подуровней.

При возбуждении атома бора его валентность увеличивается от 1 до 3:

а у атома углерода – от 2 до 4:

На первый взгляд может показаться, что возбуждение противоречит принципу наименьшей энергии. Однако в результате возбуждения возникают новые, дополнительные связи, за счет чего энергия выделяется. Если эта дополнительно выделяющаяся энергия больше, чем затраченная на возбуждение, принцип наименьшей энергии в конечном итоге выполняется. Например, в молекуле метана СН 4 средняя энергия связи С–Н составляет 413 кДж/моль. На возбуждение затрачивается энергия Е* = 402 кДж/моль. Выигрыш энергии за счет образования двух дополнительных связей составит:

D E = E доп.св – Е* = 2 413 – 402 = 424 кДж/моль.

Если принцип наименьшей энергии не соблюдается, т. е. E доп.св < Е*, то возбуждение не происходит. Так, энергетически невыгодным оказывается возбуждение атомов элементов 2-го периода за счет перехода электронов со второго на третий квантовый уровень.

Например, кислород по этой причине только двухвалентен. Однако электронный аналог кислорода – сера – имеет большие валентные возможности, поскольку на третьем квантовом уровне есть 3d-подуровень, а разность энергии между 3s-, 3р- и 3d-подуровнями несравненно меньше, чем между вторым и третьим квантовыми уровнями атома кислорода:

По этой же причине элементы 3-го периода – фосфор и хлор – проявляют переменную валентность в отличие от их электронных аналогов во 2-м периоде – азота и фтора. Возбуждением на соответствующий подуровень можно объяснить образование химических соединений элементов VIIIа группы 3-го и последующих периодов. У гелия и неона (1-й и 2-й периоды), имеющих завершенный внешний квантовый уровень, химических соединений не обнаружено, и только они являются истинно инертными газами.

Донорно-акцепторный механизм образования ковалентной связи

Пара электронов с антипараллельными спинами, образующая связь, может быть получена не только по обменному механизму, предусматривающему участие электронов обоих атомов, но и по иному механизму, называемому донорно-акцепторным: один атом (донор) предоставляет для образования связи неподеленную пару электронов, а другой (акцептор) – вакантную квантовую ячейку:

Результат по обоим механизмам получается одинаковый. Часто образование связи можно объяснить и тем, и другим механизмом. Например, молекулу НF можно получить не только в газовой фазе из атомов по обменному механизму, как показано выше (см. рис. 3), но и в водном растворе из ионов Н + и F – по донорно-акцепторному механизму:

Вне сомнений, молекулы, полученные по разным механизмам, неразличимы; связи совершенно равноценны. Поэтому правильнее не выделять донорно-акцепторное взаимодействие в особый вид связи, а считать его лишь особым механизмом образования ковалентной связи.

Когда хотят подчеркнуть механизм образования связи именно по донорно-акцепторному механизму, ее обозначают в структурных формулах стрелкой от донора к акцептору (D ® А). В других случаях такую связь не выделяют и обозначают черточкой, как и по обменному механизму: D–А.

Связи в ионе аммония, образующегося по реакции: NH 3 + H + = NH 4 + ,

выражаются следующей схемой:

Структурную формулу NН 4 + можно представить как

.

Вторая форма записи предпочтительней, поскольку отражает экспериментально установленную равноценность всех четырех связей.

Образование химической связи по донорно-акцепторному механизму расширяет валентные возможности атомов: валентность определяется не только числом неспаренных электронов, но и числом неподеленных электронных пар и вакантных квантовых ячеек, участвующих в образовании связей. Так, в приведенном примере валентность азота равна четырем.

Донорно-акцепторный механизм успешно используется для описания связи в комплексных соединениях по методу ВС.

Кратность связи. s- и p -Связи

Связь между двумя атомами может осуществляться не только одной, но и несколькими электронными парами. Именно числом этих электронных пар и определяется в методе ВС кратность – одно из свойств ковалентной связи. Например, в молекуле этана С 2 Н 6 связь между атомами углерода одинарная (однократная), в молекуле этилена С 2 Н 4 – двойная, а в молекуле ацетилена С 2 Н 2 – тройная. Некоторые характеристики этих молекул приведены в табл. 1.

Таблица 1

Изменения параметров связи между атомами C в зависимости от ее кратности

С увеличением кратности связи, как и следовало ожидать, уменьшается ее длина. Кратность связи увеличивается дискретно, т. е. в целое число раз, поэтому, если бы все связи были одинаковы, энергия также увеличилась бы в соответствующее число раз. Однако, как видно из табл. 1, энергия связи растет менее интенсивно, чем кратность. Следовательно, связи неравноценны. Это можно объяснить различием геометрических способов перекрывания орбиталей. Рассмотрим эти различия.

Связь, образованная перекрыванием электронных облаков по оси, проходящей через ядра атомов, называется s -связью.

Если в связи участвует s-орбиталь, то может образоваться только s -связь (рис. 5, а, б, в). Отсюда она и получила свое название, т. к. греческая буква s является синонимом латинской s.

При участии в образовании связи р-орбитали (рис. 5, б, г, д) и d-орбитали (рис. 5, в, д, е) перекрывание по s-типу осуществляется в направлении наибольшей плотности электронных облаков, которое и является наиболее энергетически выгодным. Поэтому при образовании связи такой способ всегда реализуется в первую очередь. Следовательно, если связь одинарная, то это обязательно s -связь, если кратная, то одна из связей непременно s -связь.


Рис. 5. Примеры s -связей

Однако из геометрических соображений понятно, что между двумя атомами может быть только одна s -связь. В кратных связях вторая и третья связи должны быть образованы другим геометрическим способом перекрывания электронных облаков.

Связь, образованная перекрыванием электронных облаков по обе стороны от оси, проходящей через ядра атомов, называется p -связью. Примеры p -связи приведены на рис. 6. Такое перекрывание энергетически менее выгодно, чем по s -типу. Оно осуществляется периферийными частями электронных облаков с меньшей электронной плотностью. Увеличение кратности связи означает образование p -связей, которые имеют меньшую энергию по сравнению с s -связью. В этом и есть причина нелинейного увеличения энергии связи в сравнении с увеличением кратности.


Рис. 6. Примеры p -связей

Рассмотрим образование связей в молекуле N 2 . Как известно, молекулярный азот химически весьма инертен. Причиной этого является образование очень прочной тройной связи NєN:

Схема перекрывания электронных облаков приведена на рис. 7. Одна из связей (2рх–2рх) образована по s-типу. Две другие (2рz–2рz, 2рy–2рy) – по p-типу. Для того чтобы не загромождать рисунок, изображение перекрывания 2рy-облаков вынесено отдельно (рис. 7, б). Для получения общей картины рис. 7, а и 7, б следует совместить.

На первый взгляд может показаться, что s -связь, ограничивая сближение атомов, не дает возможности перекрывания орбиталей по p -типу. Однако изображение орбитали включает лишь определенную долю (90%) электронного облака. Перекрывание происходит периферийной областью, находящейся вне такого изображения. Если представить орбитали, включающие большую долю электронного облака (например, 95%), то их перекрывание становится очевидным (см. штриховые линии на рис. 7, а).


Рис. 7. Образование молекулы N 2

Продолжение следует

В.И.Елфимов,
профессор Московского
государственного открытого университета

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ХИМИЧЕСКОЙ СВЯЗИ

Энергия связи – это энергия, необходимая для разрыва химической связи. Энергии разрыва и образовании связи равны по величине но противоположны по знаку. Чем больше энергия химической связи, тем устойчивее молекула. Обычно энергию связи измеряют в кДж/моль.

Для многоатомных соединений с однотипными связями за энергию связи принимается среднее ее значение, рассчитанное делением энергии образования соединения из атомов на число связей. Так, на разрыв связи H–H затрачивается 432,1 кДж/моль, а на разрыв четырех связей в молекуле метана CH 4 – 1648 кДж/∙моль и в этом случае E C–H = 1648: 4 = 412 кДж/моль.

Длина связи – это расстоянию между ядрами взаимодействующих атомов в молекуле. Она зависит от размеров электронных оболочек и степени их перекрывания.

Полярность связи – это распределение электрического заряда между атомами в молекуле.

Если электроотрицательности атомов, участвовавших в образовании связи одинаковы, то связь будет неполярная, а в случае разных электроотрицательностей – полярной. Крайний случай полярной связи, когда общая электронная пара практически полностью смещена к более электроотрицательному элементу, приводит к ионной связи.

Например: Н–Н – неполярная, Н–Сl – полярная и Nа + –Сl - – ионная.

Следует различать полярности отдельных связей и полярность молекулы в целом.

Полярность молекулы – это векторная сумма дипольных моментов всех связей молекулы.

Например:

1) Линейная молекула CO 2 (О=С=О) неполярна –дипольные моменты полярных связей С=О компенсируют друг друга.

2)Молекула воды полярна – дипольные моменты двух связей О-Н не компенсируют друг друга.

Пространственное строение молекул определяется формой и расположением в пространстве электронных облаков.

Порядок связи – это число химических связей между двумя атомами.

Например, порядок связи в молекулах H 2 , O 2 и N 2 равен соответственно 1, 2 и 3, поскольку связь в этих случаях образуется за счёт перекрывания одной, двух и трех пар электронных облаков.

4.1. Ковалентная связь – это связь между двумя атомами посредством общей электронной пары.

Количество химических связей определяется валентностями элементов.

Валентность элемента – число орбиталей, принимающих участие в образовании связей.

Ковалентная неполярная связь - эта связь, осуществляемая за счет образования электронных пар между атомами с равной электроотрицательностью. Например, Н 2 , О 2 , N 2 , Cl 2 и т. д.

Ковалентная полярная связь – эта связь между атомами с различной электроотрицательностью.

Например, НCl, H 2 S, PH 3 и т.д.

Ковалентная связь обладает свойствами:


1) Насыщаемости – способностью атома образовывать столько связей, сколько у него имеется валентностей.

2) Направленности – перекрытие электронных облаков происходит в направлении обеспечивающем максимальную плотность перекрытия.

4.2. Ионная связь – это связь между противоположно заряженными ионами.

Это крайний случай ковалентной полярной связи и возникает при большой разнице в электроотрицательностях взаимодействующих атомов. Иoннaя связь не обладает направленностью и насыщаемостью.

Степень окисления – это условный заряд атома в соединении исходя из предположения, что происходит полная ионизация связей.

Билет №10.
1.Характеристики химической связи – энергия, длина, кратность, полярность.
Причина образования химической связи.

Химическая связь – совокупность взаимодействий атомов, приводящая к образованию устойчивых систем (молекул, комплексов, кристаллов.). Она возникает, если в результате перекрывания е облаков атомов происходит уменьшение полной энергии системы. Мерой прочности служит энергия связи, которая определяется работой, нужной для разрушения данной связи.
Виды хим. связи: ковалентная (полярная, неполярная, обменная и донорно-акцепторная), ионная, водородная и металлическая.
Длина связи – расстояние между центрами атомов в молекуле. Энергия и длина связей зависят от характера распределения Эл. плотности между атомами. На распределение е плотности влияет пространственная направленность хим. связи. Если 2-х атомные молекулы всегда линейны, то формы многоатомных молекул м.б. различны.
Угол между воображаемыми линиями, которые можно провести через центры связанных атомов называется валентным. Распределение е плотности так же зависит от размеров ат. и их эо. В гомоатомных Эл. плотность распределена равномерно. В гетероатомных смещена в том направлении, которое способствует уменьшению энергии системы.
Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи отличается от ΔHобр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ. Так:

N2 + O2 → 2NO + 677,8 кДж/моль – ∆Hобр.

N + O → NO - 89,96 кДж/моль – Е св.

Кратность связи определяется количеством электронных пар, участвующих в связи между атомами. Химическая связь обусловлена перекрыванием электронных облаков. Если это перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется σ-связью. Она может быть образована за счет s – s электронов, р – р электронов, s – р электронов. Химическая связь, осуществляемая одной электронной парой, называется одинарной.
Если связь образуется более чем одной парой электронов, то она называется кратной.
Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.
Поскольку р-орбитали строго ориентированы в пространстве, то они могут перекрываться только в том случае, если перпендикулярные межъядерной оси р-орбитали каждого атома будут параллельны друг другу. Это означает, что в молекулах с кратной связью отсутствует вращение вокруг связи.

Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы Н2, N2, Cl2 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов. В подобном случае ковалентная связь называется неполярной или гомеополярной. Если же двухатомная молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что возникает асимметрия в распределении заряда. В таких случаях ковалентная связь называется полярной или гетерополярной.

Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицательность атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются электроотрицательности взаимодействующих атомов. Значения электроотрицательности атомов некоторых элементов по отношению к электроотрицательности фтора, которая принята равной 4.
Электроотрицательность закономерно изменяется в зависимости от положения элемента в периодической системе. В начале каждого периода находятся элементы с наиболее низкой электроотрицательностью - типичные металлы, в конце периода (перед благородными газами) - элементы с наивысшей электроотрицательностью, т. е. типичные неметаллы.

У элементов одной и той же подгруппы электроотрицательность с ростом заряда ядра проявляет тенденцию к уменьшению. Таким образом, чем более типичным металлом является элемент, тем ниже его электроотрицательность; чем более типичным неметаллом является элемент, тем выше его электроотрицательность.

Причина образования химической связи. Атомы большинства химических элементов в индивидуальном виде не существует, так как взаимодействуют между собой, образуя сложные частицы (молекулы, ионы и радикалы). Между атомами действуют электоростатические силы, т.е. сила взаимодействия электрических зарядов, носителями которых являются электроны и ядра атомов. В образовании химической связи между атомами главную роль играют валентные электроны.
Причины образования химической связи между атомами можно искать в электростатической природе самого атома. Благодаря наличию в атомах пространственно разделенных областей, обладающих электрическим зарядом, между различными атомами могут возникать электростатические взаимодействия, способные удерживать эти атомы вместе.
При образовании химической связи происходит перераспределение в пространстве электронных плотностей, исходно относившихся к различным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то в образовании химической связи именно этим электронам принадлежит главная роль. Количество химических связей, образованных данным атомом в соединении, называют валентностью. По этой причине электроны внешнего уровня называют валентными электронами.

2.Характеристики химической связи - энергия, длина, кратность, полярность.

Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи отличается от ΔHобр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ.(Энергии связей в молекулах, состоящих из одинаковых атомов, уменьшаются по группам сверху вниз)

Для двухатомных молекул энергия связей равна энергии диссоциации, взятой с обратным знаком: например в молекуле F2 энергия связи между атомами F-F равна - 150,6 кДж/моль. Для многоатомных молекул с одним типом связи, например, для молекул АВn, средняя энергия связи равна 1/n части полной энергии образования соединения из атомов. Так, энергия образования СН4 = -1661,1 кДж/моль.

Если в молекуле соединяются более двух различных атомов, то средняя энергия связи не совпадает с величиной энергии диссоциации молекулы. Если в молекуле представлены различные типы связи, то каждому из них можно приближенно приписать определенное значение Е. Это позволяет оценить энергию образования молекулы из атомов. Например, энергию образования молекулы пентана из атомов углерода и водорода можно вычислить по уравнению:

Е = 4EC-C + 12EC-H.

Длина связи – это расстояние между ядрами взаимодействующих атомов. Ориентировочно оценить длину связи можно, исходя из атомных или ионных радиусов, или из результатов определения размеров молекул с помощью числа Авогадро. Так, объем, приходящийся на одну молекулу воды: , о

Чем выше порядок связи между атомами, тем она короче.

Кратность: Кратность связи определяется количеством электронных пар, участвующих в связи между атомами. Химическая связь обусловлена перекрыванием электронных облаков. Если это перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется σ-связью. Она может быть образована за счет s – s электронов, р – р электронов, s – р электронов. Химическая связь, осуществляемая одной электронной парой, называется одинарной.

Если связь образуется более чем одной парой электронов, то она называется кратной.

Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.

Поскольку р-орбитали строго ориентированы в пространстве, то они могут перекрываться только в том случае, если перпендикулярные межъядерной оси р-орбитали каждого атома будут параллельны друг другу. Это означает, что в молекулах с кратной связью отсутствует вращение вокруг связи.

Полярность: Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы Н2, N2, Cl2 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов. В подобном случае ковалентная связь называется неполярной или гомеополярной. Если же двухатомная молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что возникает асимметрия в распределении заряда. В таких случаях ковалентная связь называется полярной или гетерополярной.

Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицательность атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются электроотрицательности взаимодействующих атомов.

Смещение общего электронного облака при образовании полярной ковалентной связи приводит к тому, что средняя плотность отрицательного электрического заряда оказывается выше вблизи более электроотрицательного атома и ниже - вблизи менее электроотрицательного. В результате первый атом приобретает избыточный отрицательный, а второй - избыточный положительный заряд; эти заряды принято называть эффективными зарядами атомов в молекуле.

3.Причина образования химической связи - является стремление атомов металлов и неметаллов путём взаимодействия с другими атомами достичь более устойчивой электронной структуры, подобной структуре инертных газов. Различают три основных вида связи: ковалентную полярную, ковалентную неполярную и ионную.

Ковалентная связь называется неполярной, если общая электронная пара в равной степени принадлежит обоим атомам. Ковалентная неполярная связь возникает между атомами, электроотрицательности которых одинаковы (между атомами одного и того же неметалла),т.е. в простых веществах. Например, в молекулах кислорода, азота, хлора, брома связь ковалентная неполярная.
Ковалентная связь называется полярной, если общая электронная пара смещена к одному из элементов. Ковалентная полярная связь возникает между атомами, электроотрицательности которых отличаются, но не сильно, т.е. в сложных веществах между атомами неметаллов. Например, в молекулах воды, хлороводорода, аммиака, серной кислоты связь ковалентная полярная.
​Ионная связь – это связь между ионами, осуществляется за счёт притяжения разноимённо заряженных ионов. Ионная связь возникает между атомами типичных металлов (главная подгруппа первой и второй группы) и атомами типичных неметаллов (главная подгруппа седьмой группы и кислород).
4. Химическое равновесие. Константа равновесия. Расчёт равновесных концентраций.
Химическое равновесие - состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.

А2 + В2 ⇄ 2AB

В состоянии равновесия скорости прямой и обратной реакции становятся равными.

Конста́нта равнове́сия - величина, определяющая для данной химической реакции соотношение между исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.

Способы выражения константы равновесия:
Для реакции в смеси идеальных газов константа равновесия может быть выражена через равновесные парциальные давления компонентов pi по формуле:

где νi - стехиометрический коэффициент (для исходных веществ принимается отрицательным, для продуктов - положительным). Kp не зависит от общего давления, от исходных количеств веществ или от того, какие участники реакции были взяты в качестве исходных, но зависит от температуры.

Например, для реакции окисления монооксида углерода:
2CO + O2 = 2CO2

Константа равновесия может быть рассчитана по уравнению:

Если реакция протекает в идеальном растворе и концентрация компонентов выражена через молярность ci, константа равновесия принимает вид:

Для реакций в смеси реальных газов или в реальном растворе вместо парциального давления и концентрации используют соответственно фугитивность fi и активность ai:

В некоторых случаях (в зависимости от способа выражения) константа равновесия может являться функцией не только температуры, но и давления. Так, для реакции в смеси идеальных газов парциальное давление компонента может быть выражено по закону Дальтона через суммарное давление и мольную долю компонента (), тогда легко показать, что:

где Δn - изменение числа молей веществ в ходе реакции. Видно, что Kx зависит от давления. Если число молей продуктов реакции равно числу молей исходных веществ (Δn = 0), то Kp = Kx.

Учебное пособие

    1. Астрахань

Химическая связь: Учебное пособие / Рябухин Ю. И. – Астрахань: Астрахан. гос. техн. ун-т, 2013. – 40 с.

Предназначено для студентов инженерно-технических нехимических специальностей.

Соответствует государственным образовательным стандартам высшего профессионального образования

Ил.: 15 рис., табл.: 1, библиография: 6 назв., прилож.

Печатается по решению кафедры «Общая, неорганическая и аналитическая химия» (протокол №__ от _________ 2013 г.)

Рецензент: канд. хим. наук, доцент Лебедева А.П.

© Рябухин Ю.И., 2013

© АГТУ, 2013

ВВЕДЕНИЕ

В природе химические элементы в виде свободных атомов (за исключением благородных газов – элементов VIIIА-группы) практически не встречаются. Обычно атомы какого-либо химического элемента взаимодействуют либо друг с другом, либо с атомами других элементов, образуя химические связи с возникновением соответственно простых или сложных веществ. В то же время и молекулы разных веществ взаимодействуют друг с другом.

Учение о химической связи составляет основу всей теоретической химии.

Химическая связь 1 – это совокупность сил, связывающих атомы друг с другом в более устойчивые структуры – молекулы или кристаллы.

Образование молекул и кристаллов обусловлено главным образом кулоновским притяжением между электронами и атомными ядрами.

Природа химической связи была уяснена лишь после открытия законов квантовой (волновой) механики, управляющих микромиром. Современная теория отвечает на вопросы, почему возникает химическая связь и какова природа её сил.

Образование химических связей - процесс самопроизвольный ; в противном случае не существовало бы ни простых, ни сложных веществ. С термодинамической точки зрения причиной образования химической связи является уменьшение энергии системы.

Образование химической связи сопровождается выделением энергии, а её разрыв требует затраты энергии.

Характеристиками химической связи являются её энергия и длина.

Энергия химической связи - это энергия, выделяющаяся в процессе её образования и характеризующая её прочность; энергию связи выражают в кДж на моль образовавшегося вещества (Е св , кДж/моль) 2 .

Чем больше энергия химической связи, тем связь прочнее. Энергию химической связи двухатомной молекулы оценивают, сравнивая с состоянием, предшествующим её образованию. Для многоатомных молекул с одинаковым типом связи рассчитывают среднюю энергию химической связи (например, для Н 2 О или СН 4).

Средняя энергия химической связи определяется делением энергии образования молекулы на число её связей.

Длиной химической связи называют расстояние между ядрами атомов в молекуле.

Длина связи обусловлена размерами связывающихся атомов и степенью перекрывания их электронных оболочек.

Например для фтороводорода и иодоводорода:

l HF < l HI

В зависимости от типа соединяемых частиц (атомов или молекул) различают внутримолекулярные связи, за счёт которых образуются молекулы, и межмолекулярные связи, приводящие к образованию ассоциатов из молекул или к связыванию атомов отдельных функциональных групп в молекуле. Эти виды связей резко отличаются по величине энергии: для внутримолекулярных связей энергия составляет 100–1000 кДж/моль 1 , а для межмолекулярных связей она обычно не превышает 40 кДж/моль.

Рассмотрим образование внутримолекулярной химической связи на примере взаимодействия атомов водорода.

При сближении двух атомов водорода между их электронами с антипараллельными спинами происходит сильное обменное взаимодействие, приводящее к появлению общей электронной пары. При этом увеличивается электронная плотность в межъядерном пространстве, что способствует притяжению ядер, взаимодействующих атомов. В результате энергия системы уменьшается и система становится более устойчивой - между атомами возникает химическая связь (рис. 1).

Рис. 1. Энергетическая диаграмма образования химической связи между атомами водорода

Система имеет минимум энергии при определённом расстоянии между ядрами атомов; при дальнейшем сближении атомов энергия увеличивается вследствие возрастания сил отталкивания между ядрами.

В зависимости от того, каким образом взаимодействует общая электронная пара с ядрами соединяемых атомов, различают три основных типа химической связи: ковалентную, ионную и металлическую, а также водородную связь.