Ароматические системы. Ароматические соединения. Как выглядят разнообразные химические соединения этого класса

АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ , обширный класс органических соединений, характерной чертой которых являются: 1) циклическое строение и 2) особая система распределения сил сродства внутри молекулы, сообщающая циклу большую прочность. Простейшим веществом этого чрезвычайно богатого соединениями класса органической химии является бензол, основной углеродный скелет которого схематически изображается в виде шестиугольника - «ядра». К ароматическим соединениям относят не только производные бензола и его гомологов, но также и конденсированные системы типа нафталина, фенантрена, хризена и т. д., составленные из двух, трех, четырех и т. д. ядер бензола, равно как и многие гетероциклические соединения, обладающие ароматическим характером, т. е. комплексом определенных специфических свойств. Свойства, отличающие ароматические соединения от жирных и алициклических:

1) Атомы водорода обладают большой подвижностью, что проявляется в способности ароматических соединений входить в различного рода реакции замещения. Особенно характерными являются химические превращения, протекающие при действии азотной и серной кислот. При этом происходит нитрование или сульфирование ароматических соединений, т. е. процессы, связанные с обменом атома (или атомов) водорода на нитро-группу NО 2 или сульфо-группу SО 3 H:

Обе эти реакции широко используются в технологии органических веществ.

2) Различные реакционные группы в ароматических соединениях по некоторым своим свойствам значительно отличаются от свойств этих же групп в соединениях жирного ряда: галоиды в галоидных производных бензола обладают меньшей реакциеспособностью по сравнению с галоидными алкилами; для обмена галоида в галоидных арилах (арил - ароматический углеводородный остаток) на другие группы (гидроксил, амино-группу и т. д.) приходится прибегать к более сильным химическим воздействиям, чем в соответствующих алифатических соединениях; щелочные свойства ароматических аминов значительно слабее аминов жирных. Этот «кислый» или «отрицательный» характер ароматического остатка находит свое отражение также в ряде других свойств ароматических соединений. Особенно резко отличаются ароматические амины своим отношением к азотистой кислоте; с ней они дают т. н. диазосоединения, аналоги которых в жирном ряду известны только в исключительных случаях. Изменение свойств гидроксила в ароматических соединениях выражается в повышении его кислотности; поэтому гидроксильные производные бензола – фенолы - обладают свойствами настоящих кислот. Они реагируют с водными растворами едких щелочей, образуя солеобразные соединения - феноляты. Дигидроксильные производные бензола, нафталина и т. д. обладают свойством при окислении, отнятием двух атомов Н, превращаться в своеобразные соединения - хиноны.

3) Главное отличие ароматических соединений от алифатических, и в особенности от сходных с ними по строению углеродного скелета алициклических соединений, заключается в особом состоянии насыщенности ароматического цикла. Эта насыщенность сообщает ароматическим соединениям чрезвычайную прочность и стойкость по отношению к различным химическим воздействиям. Эмпирические формулы ароматических углеводородов (С 6 Н 6 , С 7 Н 8 , С 10 Н 8 , С 14 Н 8 и т. д.) показывают, что эти соединения д. б. отнесены к классу ненасыщенных, характеризующихся реакциями присоединения и окисления. Между тем в этом отношении ароматических соединений обнаруживают существенные отличия. Бромистый водород, обычно легко присоединяющийся в месте двойной (этиленовой) связи, к ароматическим соединениям не присоединяется. Присоединение брома - одна из самых употребительных реакций на двойную связь - осуществляется в отношении ароматических соединений только при наличии особых условий. Особенно характерна устойчивость ароматического «ядра» к окислителям. В то время как жирные и алициклические ненасыщенные углеводороды быстро реагируют с марганцевокислым калием с образованием кислот, бензол в тех же условиях почти не изменяется. Если же при ядре ароматического соединения находится боковая цепь, как, например, в этилбензоле (С 6 Н 5 ·СН 2 ·СН 3), то последняя окисляется в карбоксильную группу, и полученное в результате соединение (бензойная кислота С 6 Н 5 ·СООН) сохраняет основной углеродный скелет ароматического соединения - свое ядро. Даже при сильных химических воздействиях, например при сплавлении с щелочами, циклы исходных соединений остаются неизменными.

Для объяснения своеобразных свойств ароматических соединений был предложен целый ряд различных теорий. Первая формула строения бензола была дана немецким химиком Кекуле (в 1865 г.). В структурной формуле Кекуле - 6 расположенных в виде шестиугольника метиновых групп (= СН-), из которых каждая связана с соседними одной двойной (этиленовой) связью и одной простой (формула I). В виду того, что этиленовые связи характеризуются вполне определенными химическими свойствами, которых ароматические соединения лишены, эта формула нуждалась в некоторых дополнительных гипотезах.



Одной из них явилась гипотеза парциальных валентностей Тиле, по которой остаточные силы химического сродства атомов углерода взаимно насыщаются, образуя замкнутую систему, где три двойные связи находятся в «конъюгации» - взаимном сопряжении (формула II). С развитием учения о природе химических сил, гл. обр. в связи с теорией Вернера, представления о строении бензола подвергались некоторым видоизменениям. По Вернеру, силы химического сродства углерода не представляют собой отдельных, независимо друг от друга действующих сил (единицы сродства), но являются частичным выражением одной силы - общего запаса сродства, заложенного в атоме углерода. Т. о. значение каждой данной валентности заранее не определено, но зависит от состояния насыщенности углеродного атома, т. е. от количества сродства, потраченного на насыщение другими атомами или группами. При циклическом строении молекулы подобное насыщение может происходить не только за счет связывания других, не входящих в цикл, атомов, но иногда осуществляется внутренним распределением сродства между теми атомами, из которых данный цикл составлен. В бензоле этому способствует шестичленная симметричная структура, благодаря которой остаточное сродство каждого из шести атомов углерода приходит в состояние внутреннего насыщения, сообщающего циклу большую прочность и устойчивость. Подобные представления о строении бензола находят свое выражение в формуле III, где дугообразные связи иллюстрируют характер внутреннего циклического насыщения. В последнее время, в связи с учением о строении атома, были предложены новые электронные формулы строения бензола и других ароматических соединений, однако до сих пор они не получили широкого распространения в органической химии и являются только б. или м. удачной попыткой объяснения свойств ароматических соединений, как результата действия электростатических сил.

Главным источником получения ароматических соединений является каменноугольная смола - продукт сухой перегонки каменного угля. В результате ее обработки, состоящей из различных операций физического и химического характера, добываются разнообразные ароматические соединения, составляющие основу производства красителей, фармацевтических препаратов, взрывчатых, душистых и многих других веществ. Важнейшими ароматическими соединениями каменноугольной смолы являются бензол, толуол, ксилол, фенол, крезол, нафталин, фенантрен и антрацен, промышленная разработка которых в связи с планомерными научными исследованиями вызвала совершенно исключительный рост химической промышленности в конце прошлого и в начале нынешнего столетия.

Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С 6 Н 6. Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С 6 Н 14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.


Таким образом, молекула, соответствующая формуле Кекуле , содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sp 2 -гибридизации и лежат в одной плоскости. Негибридизированные p -орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π -система) более логично, чем в виде циклогексатриена-1,3,5.

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С-С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С-С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

Изомерия и номенклатура

Для гомологов бензола характерна изомерия положения нескольких заместителей . Простейший гомолог бензола - толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:


Основой названия ароматического углеводорода с небольшими заместителями является слово бензол . Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:


По старой номенклатуре положения 2 и 6 называют ортоположениями , 4 - пара- , а 3 и 5 - метаположениями.

Физические свойства
Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо - в органических растворителях.

Химические свойства бензола

Реакции замещения . Ароматические углеводороды вступают в реакции замещения.
1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрирование бензола и его гомологов . При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитрогруппу -NO 2:

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.
Реакции присоединения. Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.
1. Гидрирование . Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

Гомологи бензола

Состав их молекул отвечает формуле С n H 2 n-6 . Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С 8 Н 10:

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки орто — (сокращенно о-) – заместители расположены у соседних атомов углерода, мета- (м -) – через один атом углерода и пара — (п -) – заместители друг против друга.
Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями.

Гомологи бензола вступают в реакции замещения (бромирование, нитрирование). Толуол окисляется перманганатом при нагревании:

Гомологи бензола используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.



















Ароматические углеводороды - соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителя­ми ароматических углеводородов являются бензол и его гомологи - продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение - бензол - было открыто в 1825 г. М. Фарадеем. Была уста­новлена его молекулярная формула - C 6 H 6 . Если сравнить его состав с составом предельного углево­дорода, содержащего такое же количество атомов углерода, - гексаном (C 6 H 14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приво­дит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена-1,3,5.

Таким образом, молекула, со­ответствующая формуле Кекуле, содержит двойные свя­зи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения:ги­дрирования, бромирования, гидратации и т. д.

Однако данные многочис­ленных экспериментов по­казали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температу­рах и освещении), устойчив к окислению . Наиболее ха­рактерными для него явля­ются реакции замещения , следовательно, бензол по характеру ближе к предель­ным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензола. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод-углеродные связи в бензоле равноценны, и их свойства не похо­жи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или фор­мулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола?

На основании данных исследований и расче­тов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sр 2 -гибридизации и лежат в одной плоскости. Негибридизованные р-орбитали атомов углерода, составляющие двой­ные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя еди­ную π-систему. Таким образом, система череду­ющихся двойных связей, изображенных в фор­муле Кекуле, является циклической системой сопряженных, перекрывающихся между собой π-связей. Эта система представляет собой две то­роидальные (похожие на бублик) области элек­тронной плотности, лежащие по обе стороны бен­зольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π-система) более логично, чем в виде циклогексантриена-1,3,5.

Американский ученый Л. Полинг предло­жил представлять бензол в виде двух граничных структур, отличающихся распределением элект­ронной плотности и постоянно переходящих друг в друга:

Данные измерений длин связей подтверждают это предположение. Выяснено, что все связи С-С в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С-С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы ко­торых содержат несколько циклических структур, например:

Изомерия и номенклатура ароматических углеводородов

Для гомологов бензола характерна изомерия по­ложения нескольких заместителей. Простейший гомолог бензола - толуол (метилбензол) - не име­ет таких изомеров; следующий гомолог представ­лен в виде четырех изомеров:

Основой названия ароматического углеводорода с небольшими заместителями является слово бен­зол. Атомы в ароматическом кольце нумеруют, на­чиная от старшего заместителя к младшему :

Если заместители одинаковые, то нумерацию проводят по самому короткому пути : например, вещество:

называется 1,3-диметилбензол, а не 1,5-диметил­бензол.

По старой номенклатуре положения 2 и 6 на­зывают ортоположениями, 4 - пара-, 3 и 5 - ме­таположениями.

Физические свойства ароматических углеводородов

Бензол и его простейшие гомологи в обычных ус­ловиях - весьма токсичные жидкости с характер­ным неприятным запахом. Они плохо растворяются в воде, но хорошо - в органических растворителях.

Химические свойства ароматических углеводородов

Реакции замещения. Ароматические углеводороды вступают в реакции замещения.

1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (III), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрование бензола и его гомологов . При вза­имодействии ароматического углеводорода с азот­ной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитро­группу - NO 2:

Восстановлением нитробензола получают ани­лин - вещество, которое применяется для полу­чения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.

Реакции присоединения. Ароматические соеди­нения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются цикло­гексан и его производные.

1. Гидрирование. Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнора­дикальной:

Химические свойства ароматических углеводородов - конспект

Гомологи бензола

Состав их молекул отвечает формуле C n H 2n-6 . Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры . Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы C 8 H 10 :

По старой номенклатуре, употребляемой для указания относительного расположения двух одина­ковых или разных заместителей в бензольном коль­це, используют приставки орто- (сокращенно о-) - заместители расположены у соседних атомов углерода, мета- (м-) - через один атом углерода и пара- (п-) - заме­стители друг против друга.

Первые члены гомоло­гического ряда бензола - жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями. Гомологи бензола вступают в реак­ции замещения:

бромирование:

нитрование:

Толуол окисляется перманганатом при нагрева­нии:

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Химия — очень увлекательная наука. Она изучает все вещества, которые существуют в природе, а их огромное множество. Они разделяются на неорганические и органические. В этой статье мы рассмотрим ароматические углеводороды, которые относятся к последней группе.

Что это такое?

Это органические вещества, которые имеют в своем составе одно или несколько бензольных ядер — устойчивых структур из шести атомов углерода, соединенных в многоугольник. Данные химические соединения обладают специфическим запахом, что можно понять из их названия. Углеводороды этой группы относятся к циклическим, в отличие от алканов, алкинов и др.

Ароматические углеводороды. Бензол

Это самое простое химическое соедиение из данной группы веществ. В состав его молекул входят шесть атомов углерода и столько же гидрогена. Все остальные ароматические углеводороды являются производными бензола и могут быть получены с его использованием. Это вещество при нормальных условиях находится в жидком состоянии, оно бесцветное, обладает специфическим сладковатым запахом, в воде не растворяется. Закипать оно начинает при температуре +80 градусов по Цельсию, а замерзать — при +5.

Химические свойства бензола и других ароматических углеводородов

Первое, на что нужно обратить внимание, — галогенирование и нитрование.

Реакции замещения

Первая из них — галогенирование. В этом случае, чтобы химическое взаимодействие могло осуществиться, нужно использовать катализатор, а именно трихлорид железа. Таким образом, если добавить к бензолу (С 6 Н 6) хлор (Cl 2), то мы получим хлорбензол (С 6 Н 5 Cl) и хлороводород (HCl), который выделится в виде прозрачного газа с резким запахом. То есть вследствие этой реакции один атом водорода замещается атомом хлора. То же самое может произойти и при добавлении к бензолу других галогенов (йода, брома и т. д.). Вторая реакция замещения — нитрование — проходит по похожему принципу. Здесь в роли катализатора выступает концентрированный раствор серной кислоты. Для проведения такого рода химической реакции к бензолу необходимо добавить нитратную кислоту (HNO 3), тоже концентрированную, в результате чего образуются нитробензол (C 6 H 5 NO 2) и вода. В этом случае атом гидрогена замещается группой из атома нитрогена и двух оксигена.

Реакции присоединения

Это второй тип химических взаимодействий, в которые способны вступать ароматические углеводороды. Они также существуют двух видов: галогенирование и гидрирование. Первая происходит только при наличии солнечной энергии, которая выступает в роли катализатора. Для проведения этой реакции к бензолу также необходимо добавить хлор, но в большем количестве, чем для замещения. На одну молекулу бензола должно приходиться три хлора. В результате получим гексахлорциклогексан (С 6 Н 6 Cl 6), то есть к имеющимся атомам присоединится еще и шесть хлора.

Гидрирование происходит только в присутствии никеля. Для этого необходимо смешать бензол и гидроген (Н 2). Пропорции те же, что и в предыдущей реакции. Вследствие этого образуется циклогексан (С 6 Н 12). Все остальные ароматические углеводороды также могут вступать в такого типа реакции. Они происходят по такому же принципу, как и в случае с бензолом, только с образованием уже более сложных веществ.

Получение химических веществ этой группы

Начнем все так же с бензола. Его можно получить с помощью такого реагента, как ацетилен (С 2 Н 2). Из трех молекул данного вещества под воздействием высокой температуры и катализатора образуется одна молекула нужного химического соединения.

Также бензол и некоторые другие ароматические углеводороды можно добыть из каменноугольной смолы, которая образуется во время производства металлургического кокса. К получаемым таким способом можно отнести толуол, о-ксилол, м-ксилол, фенантрен, нафталин, антрацен, флуорен, хризен, дифенил и другие. Кроме того, вещества этой группы часто добывают из продуктов переработки нефти.

Как выглядят разнообразные химические соединения этого класса?

Стирол представляет собой бесцветную жидкость с приятным запахом, малорастворимую в воде, температура кипения составляет +145 градусов по Цельсию. Нафталин — кристаллическое вещество, также мало растворяется в воде, плавится при температуре +80 градусов, а закипает при +217. Антрацен в нормальных условиях также представлен в виде кристаллов, однако уже не бесцветных, а имеющих желтую окраску. Это вещество не растворяется ни в воде, ни в органических растворителях. Температура плавления — +216 градусов по шкале Цельсия, кипения — +342. Фенантрен выглядит как блестящие кристалы, которые растворяются только в органических растворителях. Температура плавления — +101 градус, кипения — +340 градусов. Флуорен, как понятно из названия, способен к флуоресценции. Это, как и многие другие вещества данной группы, — бесцветные кристаллы, нерастворимые в воде. Температура плавления — +116, закипания — +294.

Применение ароматических углеводородов

Бензол используется при производстве красителей в качестве сырья. Также он применяется при получении взрывчатки, пестицидов, некоторых лекарств. Стирол используют в производстве полистирола (пенопласта) с помощью полимеризации исходного вещества. Последний широко применяют в строительстве: в качестве тепло- и звукоизолирующего, электроизоляционного материала. Нафталин, как и бензол, участвует в производстве пестицидов, красителей, лекарств. Кроме того, он используется в химической промышленности для получения многих органических соединений. Антрацен также применяют в изготовлении красителей. Флуорен играет роль стабилизатора полимеров. Фенантрен, как и предыдущее вещество и многие другие ароматические углеводороды, — один из компонентов красителей. Толуол широко применяют в химической промышленности для добывания органических веществ, а также для получения взрывчатки.

Характеристика и использование веществ, добываемых с помощью ароматических углеводородов

К таким в первую очередь можно отнести продукты рассмотренных химических реакций бензола. Хлорбензол, к примеру, является органическим растворителем, также используется в производстве фенола, пестицидов, органических веществ. Нитробензол является компонентом полировальных средств для металла, применяется при изготовлении некоторых краситлей и ароматизаторов, может играть роль растворителя и окислителя. Гексахлорциклогексан используется в качестве яда для борьбы с насекомыми-вредителями, а также в химической промышленности. Циклогексан применяют в производстве лакокрасочных изделий, при получении многих органических соединений, в фарамацевтической отрасли промышленности.

Заключение

Прочитав эту статью, можно сделать вывод, что все ароматические углеводороды имеют однотипную химическую структуру, что позволяет объединить их в один класс соединений. Кроме того, их физические и химические свойства также весьма похожи. Внешний вид, температуры кипения и плавления всех химических веществ данной группы не сильно отличаются. Свое применение многие ароматические углеводороды находят в одних и тех же отраслях промышленности. Вещества, которые можно получить вследствие реакций галогенирования, нитрования, гидрирования, также имеют схожие свойства и используются в похожих целях.

Напомним, что все органические соединения подразделяются на две большие группы:

  • соединения с открытой цепью атомов (алифатические ) и
  • циклические соединения .

Циклические соединения характерны наличием в их молекулах, так называемых, циклов.


Цикл – это замкнутая цепь, т. е. такая цепь, которая, начавшись в некоторой вершине, завершается в ней же.

Циклические соединения, в свою очередь, подразделяются на:

  • Карбоциклические соединения
  • - алициклические соединения,
    - ароматические соединения.

Карбоциклические соединения – это соединения, в молекулах которых присутствуют циклы, состоящие только из атомов углерода.


Помимо связи друг с другом, атомы углерода также связаны и с другими атомами (водородом, кислородом и т.д), но сам цикл составлен именно из атомов углерода. Это обстоятельство отражено в их названии (Carboneum по латински – углерод).



Это циклические соединения, в циклах которых помимо атомов углерода, присутствуют атомы других элементов (кислорода, азота, серы и др.). И это тоже отражено в их названии (от греч. ετερος - «иной», «различный»).


На рисунке выше (справа) в качестве примера гетероциклического соединения приведен Пиридин.

Карбоциклические соединения

Карбоциклические соединения разделяют на алициклические и ароматические.

Алициклические соединения являются одним из двух подвидов карбоциклических соединений.


Называют так потому, что по химическим свойствам они наиболее близки к алифатическим соединениям, хотя по структуре они и являются кольцеобразными.


Они различаются по числу атомов углерода в цикле и, в зависимости от характера связи между этими атомами, могут быть предельными и непредельными.


В молекулах предельных циклические углеводородов атомы угерода соединены простыми связями, как и в молекулах предельных углеводородов с открытой цепью, что делает их сходными по свойствам с последними.


Примерами таких соединений могут служить циклопарафины:



Названия циклических соединений строятся подобно наименованиям соединений жирного (алифатического) ряда с добавлением приставки «цикло».

Второй подвид карбоциклических соединений – ароматические соединения.


Ароматический ряд охватывает все карбоциклические соединения, в молекулах которых присутствует специфическая группировка атомов – бензольное кольцо . Эта группировка атомов обуславливает определённые физические и химические свойства ароматических соединений.


Простейшими из них являются бензол С 6 Н 6 и его гомологи, например, толуол (метилбензол) С 6 Н 5 -СН 3 , этилбензол С 6 Н 5 -СН 2 СН 3 . Общая формула этих соединений С n H 2n-2 .



Характерная особенность структуры бензольного кольца – чередующиеся друг с другом три простые и три двойные связи . Для простоты написания бензольное ядро изображается упрощённо в виде шестиугольника, в котором символы С и Н , относящиеся к кольцу, не пишут:



Одновалентный радикал бензола С 6 Н 5 - , образующийся при отнятии одного атома водорода от любого углеродного атома бензольного ядра, называют фенилом .


Известны ароматические углеводороды с кратными связями в боковых цепях, например стирол, а также многоядерные, содержащие несколько бензольных ядер, например нафталин и антрацен :



Или упрощённо:


Получение ароматических соединений и их использование.


Ароматические углеводороды содержатся в каменноугольной смоле, получаемой при коксовании каменного угля. Другим важным источником их получения служит нефть некоторых месторождений.


Ароматические углеводороды также получают путём каталитической ароматизации ациклических углеводородов нефти.


Некоторые ароматические соединения могут быть выделены из эфирных масел растений. Их применяют для получения душистых веществ.


Ароматические углеводороды и их производные широко применяются для получения пластмасс, синтетических красителей, лекарственных и взрывчатых веществ, синтетических каучуков, моющих средств.


Происхождение названия.


Бензол и все соединения, содержащие ядро бензола, названы ароматическими (в начале XIX века), поскольку первыми изученными представителями этого ряда были душистые вещества, или соединения, выделенные из природных ароматических веществ. Теперь к этому ряду относятся многочисленные соединения, не имеющие приятного запаха, но обладающие комплексом химических свойств, называемых ароматическими свойствами.


Особенности свойств и строения ароматических углеводородов.


Ароматические свойства бензола и его гомологов, определяемые особенностью его структуры, выражаются в относительной устойчивости бензольного ядра, несмотря на непредельность бензола по составу.


Так, в отличие от непредельных соединений с этиленовыми двойными связями, бензол устойчив к действию окислителей. Например, подобно предельным углеводородам, он не обесцвечивает перманганат калия. Реакции присоединения для бензола не характерны. Наоборот, для него, как и для других ароматических соединений, характерны реакции замещения атомов водорода в бензольном ядре.


Из сказанного следует, что формула бензола с чередующимися простыми и двойными связями неточно выражает природу связей между атомами углерода в бензольном ядре.


В соответствии с этой формулой в бензоле должны быть три локализованных пи-связи, т.е. три пары пи-электронов, каждая из которых фиксирована между двумя атомами углерода. Если обозначить эти пи-электроны точками, то строение можно представить схемой:


Однако опыт показывает, что в кольце бензола нет обычных двойных связей, чередующихся с простыми, и что все связи между С -атомами равноценны.


Эта равноценность объясняется следующим образом.


Каждый из атомов углерода в кольце бензола находится в состоянии sp 2 -гибридизации и затрачивает по три валентных электрона на образование сигма-связей с двумя соседними атомами углерода и одним атомом водорода.


При этом все шесть атомов углерода и все сигма-связи С-С и С-Н лежат в одной плоскости:



Облако четвёртого валентного электрона каждого из атомов углерода (т.е. облако р -электрона, не участвующего в гибридизации) имеет форму объёмной восьмёрки («гантели») и ориентировано перпендикулярно плоскости бензольного кольца.


Каждое из таких р -электронных облаков перекрывается над и под плоскостью кольца с р -электронными облаками двух соседних атомов углерода.



Плотность облаков пи -электронов в бензоле равномерно распределена между всеми связями С-С . Иначе говоря, шесть пи -электронов обобщены всеми углеродными атомами кольца и образуют единое кольцевое облако (ароматический электронный секстет ).


По этой причине в структурных формулах вместо общепринятого символа бензольного ядра с чередующимися двойными и простыми связями используют шестиугольник с кружочком внутри:


Гетероциклическими называют соединения с замкнутой цепью, включающие не только атомы углерода, но и атомы других элементов.



Представленный на рисунке Пиридин можно рассматривать как бензол, в котором группа -СН заменена атомом азота.


– наиболее многочисленный класс соединений. К ним относятся многие витамины, пигменты, антибиотики, большинство алкалоидов, некоторые аминокислоты и пр.


Элементы, которые учавствуют вместе с атомами углерода в образовании цикла, называют гетероатомами . Наиболее распространены и изучены гетероциклические соединения кислорода, серы и азота.


В составе гетеромолеклу может быть как один гетероатом, так большее количество:


Гетероциклы могут содержать три, четыре, пять, шесть и больше число атомов. Аналогично карбоциклическим соединениям пяти- и шестичленные гетероциклы наиболее стойки.



Присутствие гетероатома приводит к нарушению равномерности распределения электронной плотности в цикле. Это обусловливает способность гетероциклических соединений реагировать как с электрофильными, так и с нуклеофильными реагентами (т.е. быть как донором, так и акцептором электронной пары), а также сравнительно легко претерпевать разрывание цикла.