Определение магния в воде расчетным методом. Определение иона магния. Подготовка к выполнению измерений

ЖЕСТКОСТЬ ВОДЫ.

Ростов-на-Дону

2007

Предисловие

1 РАЗРАБОТАН ГУ «Гидрохимический институт»

2 РАЗРАБОТЧИКИ Л.В. Боева, канд. хим. наук, Т.С. Евдокимова

3 СОГЛАСОВАН с УМЗА и НПО «Тайфун» Росгидромета

4 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Заместителем Руководителя Росгидромета

5 АТТЕСТОВАН ГУ «Гидрохимический институт» свидетельство об аттестации № 47.24-2007 от 10.01.2007

6 ЗАРЕГИСТРИРОВАН ГУ «НПО «Тайфун» за номером РД 52.24.395-2007 06.08.2007 г.

7 ВЗАМЕН РД 52.24.395-95 «Методические указания. Методика выполнения измерений жесткости воды титриметическим методом с трилоном Б».

Введение

Жесткость - свойство воды, обусловленное присутствием в ней растворенных солей щелочно-земельных металлов (преимущественно кальция и магния). Различают жесткость кальциевую и магниевую, связанную с присутствием в воде соответственно ионов кальция и магния. Суммарное содержание ионов этих металлов в воде называется общей жесткостью.

Общая жёсткость подразделяется на карбонатную, обусловленную присутствием в воде гидрокарбонатов и карбонатов кальция и магния, и некарбонатную, обусловленную наличием кальциевых и магниевых солей сильных кислот.

Карбонатную жёсткость также называют временной (устранимой), а некарбонатную - постоянной. Гидрокарбонаты кальция и магния при длительном кипячении воды разлагаются с выделением диоксида углерода и выпадающих в осадок карбонатов кальция и магния (при дальнейшем кипячении карбонат магния гидролизуется с образованием гидроксида); жесткость воды при этом уменьшается:

Са(НСО 3) 2 = СО 2 ­ + СаСО 3 ¯ + Н 2 О;

Mg(HCО 3) 2 = СО 2 ­ + MgCО 3 ¯ + Н 2 О;

MgCО 3 + Н 2 О = Mg (OH ) 2 ¯ + CО 2 ­ .

Жесткость, оставшаяся после кипячения воды в течение определенного времени, достаточного для полного разложения гидрокарбонатов и удаления диоксида углерода (обычно 1 - 1,5 ч), называется постоянной жесткостью. Постоянная жесткость является важной характеристикой качества воды, используемой для технических целей. Она преимущественно зависит от содержания ионов кальция и магния, которые после кипячения уравновешиваются сульфатами и хлоридами. Эту часть постоянной жесткости, называемую также остаточной жесткостью, можно найти по разности между общей жесткостью и концентрацией гидрокарбонатов, выраженной в миллимолях на кубический дециметр. Однако кроме остаточной жесткости в воде после кипячения остается небольшое количество ионов кальция и магния, обусловленное растворимостью карбоната кальция и гидроксида магния. Эта часть постоянной жесткости называется неустранимой жесткостью. Поскольку растворимость карбоната кальция и гидроксида магния в присутствии ионов кальция и магния в растворе весьма незначительна, обычно некарбонатную (остаточную) жесткость отождествляют с постоянной жесткостью. Способ расчета постоянной жесткости и составляющих ее остаточной и неустранимой жесткости на основе результатов определения компонентов солевого состава воды приведен в «Руководстве по химическому анализу вод суши». Л.: Гидрометеоиздат. 1973.

Жесткость воды в настоящее время выражают в миллимолях количества вещества эквивалентов (КВЭ) Са 2+ и Mg 2+ , содержащихся в 1 дм 3 воды - ммоль/дм 3 КВЭ (ранее эту единицу обозначали мг-экв/л или мг-экв/дм 3). Миллимоль КВЭ Са 2+ и Mg 2+ равны соответственно 20,04 мг/ммоль и 12,15 мг/ммоль.

В естественных условиях ионы кальция и магния поступают в воду в результате взаимодействия растворенного диоксида углерода с карбонатными минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов являются также микробиальные процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий: силикатной, металлургической, стекольной, химической промышленности, стоки с сельскохозяйственных угодий.

Общая жесткость поверхностных вод колеблется в основном от единиц до десятков миллимолей КВЭ в кубическом дециметре, причем карбонатная жесткость часто составляет 70 - 80 % от общей жесткости. Она подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период паводка. Жесткость подземных вод более постоянна.

Вода с жесткостью менее 4 ммоль/дм 3 КВЭ характеризуется как мягкая; от 4 до 8 ммоль/дм 3 КВЭ - средней жесткости; от 8 до 12 ммоль/дм 3 КВЭ - жесткая; более 12 ммоль/дм 3 КВЭ - очень жесткая.

Обычно преобладает (иногда в несколько раз) жесткость, обусловленная ионами кальция, однако в отдельных случаях, магниевая жесткость может достигать 50 - 60 % общей жесткости и более (часто магниевая жесткость превосходит кальциевую в морских и океанических водах, либо в поверхностных водах суши с высоким содержанием сульфат-ионов).

Высокая жесткость оказывает отрицательное влияние на свойства воды используемой в промышленности и для хозяйственно-бытовых целей. Жесткие требования в отношении величины жесткости предъявляются к воде, питающей паросиловые установки, поскольку в присутствии сульфатов и карбонатов кальций и магний образуют прочную накипь, уменьшающую теплопроводность металла и приводящую к перерасходу топлива и перегреву котлов. Для устранения жесткости применяют различные способы - осаждение труднорастворимых солей кальция и магния химическим или термическим путем, умягчение с помощью ионитов.

Высокая жесткость, особенно, обусловленная превышением солей магния, ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая отрицательное воздействие на органы пищеварения. Предельно допустимая величина жесткости в питьевых водах 7 ммоль/дм 3 КВЭ, но в некоторых случаях допускается использовать для питьевых целей воду с жесткостью 10 ммоль/дм 3 КВЭ.

РД 52.24.395-2007

РУКОВОДЯЩИЙ ДОКУМЕНТ

ЖЕСТКОСТЬ ВОДЫ.
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
ТИТРИМЕТРИЧЕСКИМ МЕТОДОМ С ТРИЛОНОМ Б

Дата введения 2007-09-01

1 Область применения

1.1 Настоящий руководящий документ устанавливает методику выполнения измерений (далее - методика) общей и некарбонатной жесткости в пробах природных и очищенных сточных вод в диапазоне от 0,060 до 13,00 ммоль/дм 3 КВЭ (далее - ммоль/дм 3) титриметрическим методом с трилоном Б.

При анализе проб воды с величиной жесткости, превышающей 13,00 ммоль/дм 3 , допускается выполнение измерений после соответствующего разбавления пробы дистиллированной водой.

1.2 Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

2 Нормативные ссылки

В настоящем руководящем документе использованы ссылки на следующие нормативные документы:

Таблица 1 - Диапазон измерений, значения характеристик погрешности и ее составляющих (Р = 0,95)

При выполнении измерений применяют следующие средства измерений и другие технические средства:

4.1.1 Весы лабораторные высокого ( II ) класса точности по ГОСТ 24104-2001

4.1.2 Весы лабораторные среднего ( III ) класса точности по ГОСТ 24104-2001 с пределом взвешивания 200 г.

4.1.3 Государственный стандартный образец состава водного раствора кальция ГСО 8065-95 (далее - ГСО кальция).

4.1.4 Государственный стандартный образец состава водного раствора магния ГСО 7190-95 (далее - ГСО магния).

4.1.5 Колбы мерные 2 класса точности исполнения 2, 2а по ГОСТ 1770-74 вместимостью:

100 см 3 - 2 шт.

250 см 3 - 4 шт.

500 см 3 - 2 шт.

4.1.6 Пипетки градуированные 2 класса точности исполнения 1, 2 по ГОСТ 29227-91 вместимостью:

1 см 3 - 5 шт.

2 см 3 - 1 шт.

5 см 3 - 1 шт.

10 см 3 - 1 шт.

4.1.7 Пипетки с одной отметкой 2 класса точности исполнения 2 по ГОСТ 29169-91 вместимостью:

5 см 3 - 3 шт.

10 см 3 - 3 шт.

25 см 3 - 3 шт.

50 см 3 - 2 шт.

100 см 3 - 2 шт.

4.1.8 Бюретки 2 класса точности исполнения 1, 3 по ГОСТ 29251-91 вместимостью:

5 см 3 - 1 шт.

10 см 3 - 1 шт.

25 см 3 - 1 шт.

4.1.9 Цилиндры мерные исполнения 1, 3 по ГОСТ 1770-74 вместимостью:

25 см 3 - 1 шт.

50 см 3 - 1 шт.

100 см 3 - 2 шт.

250 см 3 - 1 шт.

500 см 3 - 1 шт.

1000 см 3 - 1 шт.

4.1.10 Пробирки конические исполнения 1 по ГОСТ 1770-74 вместимостью

10 см 3 - 2 шт.

4.1.11 Колбы конические Кн исполнения 2, ТХС по ГОСТ 25336-82 вместимостью

250 см 3 - 10 шт.

500 см 3 - 4 шт.

4.1.12 Стаканы В-1, ТХС по ГОСТ 25336-82 вместимостью

100 см 3 - 3 шт.

250 см 3 -2 шт.

600 см 3 - 2 шт.

1000 см 3 - 2 шт.

4.1.13 Стаканы полипропиленовые вместимостью

100 см 3 - 1 шт.

250 см 3 - 1 шт.

4.1.14 Воронки лабораторные по ГОСТ 25336-82 диаметром

56 мм - 2 шт.

75 мм - 4 шт.

4.1.15 Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82

СВ-14/8 - 1 шт.

СВ-19/9 - 1 шт.

СВ-24/10 - 1 шт.

СВ-34/12 - 1 шт.

4.1.16 Ступка № 3 или 4 по ГОСТ 9147-80 - 1 шт.

4.1.17 Колонка хроматографическая диаметром 1,5 - 2,0 и длиной

25 - 30 см - 1 шт.

4.1.18 Стекло часовое - 1 шт.

4.1.19 Чашка биологическая (Петри) исполнения 2 по ГОСТ 25336-82 - 1 шт.

4.1.20 Чашка выпарительная № 1 или 2 по ГОСТ 9147-80 - 1 шт.

4.1.21 Палочки стеклянные - 2 шт.

4.1.22 Эксикатор исполнения 2 с диаметром корпуса 140 мм или 190 мм по ГОСТ 25336-82 .

4.1.23 Промывалка.

4.1.24 Склянки для хранения проб и растворов из светлого и темного стекла с завинчивающимися или притертыми пробками вместимостью 100 см 3 , 250 см 3 , 500 см 3 , 1000 см 3 .

4.1.25 Посуда полиэтиленовая (полипропиленовая) для хранения проб и растворов вместимостью 100 см 3 , 250 см 3 , 500 см 3 , 1000 см 3 .

4.1.26 Шкаф сушильный общелабораторного назначения.

4.1.27 Электроплитка с закрытой спиралью по ГОСТ 14919-83 .

4.1.28 Печь муфельная любого типа.

4.1.29 Устройство для фильтрования проб с использованием мембранных или бумажных фильтров.

4.1.30 Холодильник бытовой.

4.1.31 Маркер (карандаш по стеклу).

Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в .

При выполнении измерений применяют следующие реактивы и материалы:

4.2.1 Соль динатриевая этилендиамин- N ,N,N ¢ ,N ¢ -тетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 10652-73 , ч.д.а.

4.2.2 Цинк гранулированный по ТУ 6-09-5294-86, ч.д.а.

4.2.3 Кальций углекислый (кальция карбонат) по ГОСТ 4530-76 , х.ч., и магний оксид по ГОСТ 4526-75 , х.ч. (при отсутствии ГСО).

4.2.4 Аммоний хлористый (хлорид аммония) по ГОСТ 3773-72 , ч.д.а.

4.2.5 Аммиак водный по ГОСТ 3760-79 , ч.д.а.

4.2.6 Натрий хлористый (хлорид натрия) по ГОСТ 4233-77 , ч.д.а.

4.2.7 Натрия гидроокись (гидроксид натрия) по ГОСТ 4328-77 , ч.д.а.

4.2.8 Натрий сернистый 9-водный (сульфид натрия) по ГОСТ 2053-77 , ч.д.а., или натрия N ,N -диэтилдитиокарбамат 3-водный (диэтилдитиокарбамат натрия) по ГОСТ 8864-71 , ч.д.а.

4.2.9 Кислота соляная по ГОСТ 3118-77 , ч.д.а.

4.2.10 Эриохром черный Т (хромоген черный ЕТ).

4.2.11 Гидроксиламина гидрохлорид по ГОСТ 5456-79 , ч.д.а.

4.2.12 Уголь активный.

4.2.13 Квасцы алюмокалиевые по ГОСТ 4329-77 , ч.д.а.

4.2.14 Барий хлорид 2-водный (хлорид бария) по ГОСТ 4108-72 , ч.д.а.

4.2.15 Вода дистиллированная по ГОСТ 6709-72 .

4.2.16 Универсальная индикаторная бумага (рН 1 - 10) по ТУ 6-09-1181-76.

4.2.17 Фильтры мембранные «Владипор МФАС-ОС-2», 0,45 мкм, по ТУ 6-55-221-1-29-89 или другого типа, равноценные по характеристикам.

4.2.18 Фильтры бумажные обеззоленные «синяя лента» и «белая лента» по ТУ 6-09-1678-86.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в .

5 Метод измерений

Выполнение измерений жесткости основано на способности ионов кальция и магния в среде аммонийно-аммиачного буферного раствора (рН 9 - 10) образовывать с трилоном Б малодиссоциированные комплексные соединения. При титровании вначале связывается кальций, образующий более прочный комплекс с трилоном Б, а затем магний. Конечная точка титрования определяется по изменению окраски индикатора эриохрома черного Т от вишнёво-красной (окраска соединения магния с индикатором) до голубой (окраска свободного индикатора).

6 Требования безопасности, охраны окружающей среды

6.1 При выполнении измерений жесткости в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.

6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2, 3 классам опасности по ГОСТ 12.1.007 .

6.4 Дополнительных требований по экологической безопасности не предъявляется.

7 Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются лица со средним профессиональным образованием или без профессионального образования, но имеющие стаж работы в лаборатории не менее года и освоившие методику.

8 Условия выполнения измерений

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

Температура окружающего воздуха (22 ± 5) °С;

Атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст.);

Влажность воздуха не более 80 % при 25 °С;

Напряжение в сети (220 ± 10) В;

Частота переменного тока в сети питания (50 ± 1) Гц.

9 Отбор и хранение проб

Отбор проб для выполнения измерений величины жесткости производится в соответствии с ГОСТ 17.1.5.05 и ГОСТ Р 51592 . Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ Р 51592 . Мутные пробы фильтруют через мембранный фильтр 0,45 мкм или бумажный фильтр «синяя лента». Первую порцию фильтрата следует отбросить. Пробы хранят в стеклянной или полиэтиленовой посуде в темном месте не более 6 мес.

10 Подготовка к выполнению измерений

10.1 Приготовление растворов и реактивов

10.1.1 Раствор трилона Б с молярной концентрацией 0,02 моль/дм 3 количества вещества эквивалента (далее - КВЭ)

Растворяют 3,72 г трилона Б в 1 дм 3 дистиллированной воды. Точную концентрацию раствора устанавливают по раствору хлорида цинка в соответствии с не реже 1 раза в месяц.

Раствор хранят в плотно закрытой посуде.

Отвешивают около 0,35 г металлического цинка, смачивают его небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при температуре 105 ° С в течение 1 ч, затем охлаждают и взвешивают на лабораторных весах с точностью до четвертого знака после запятой.

Навеску цинка количественно переносят в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10 - 15 см 3 бидистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют. После растворения объем раствора доводят до метки на колбе дистиллированной водой и перемешивают.

Рассчитывают молярную концентрацию хлорида цинка C Zn , моль/дм 3 КВЭ, в полученном растворе по формуле

(1)

где q - навеска металлического цинка, г;

32,69 - молярная масса эквивалента цинка (1/2 Zn 2+ ), г/моль;

V - вместимость мерной колбы, дм 3 .

При расчете значение C Zn округляют таким образом, чтобы оно содержало 4 значащих цифры.

Раствор цинка хранят в плотно закрытой посуде в течение 6 мес.

10.1.3 Аммонийно-аммиачный буферный раствор

В мерной колбе вместимостью 500 см 3 растворяют в 100 см 3 дистиллированной воды 7,0 г хлорида аммония и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки на колбе дистиллированной водой и тщательно перемешивают. Буферный раствор хранят в полиэтиленовой посуде не более 2 мес.

10.1.4 Индикатор эриохром черный Т

В ступке тщательно растирают 0,5 г эриохрома черного Т с 50 г хлорида натрия. Хранят в склянке из темного стекла не более 6 мес.

10.1.9 Раствор гидроксида натрия, 20 %-ный

Растворяют 20 г гидроксида натрия в 80 см 3 дистиллированной воды.

10.1.10 Раствор гидроксида натрия, 0,4 %-ный

Растворяют 2 г гидроксида натрия в 500 см 3 дистиллированной воды.

10.1.11 Раствор гидроксида натрия, 1 моль/дм 3

Растворяют 20 г гидроксида натрия в 500 см 3 дистиллированной воды.

Растворы гидроксида натрия устойчивы при хранении в плотно закрытой полиэтиленовой посуде.

10.1.12 Раствор сульфида натрия

В 50 см 3 дистиллированной воды растворяют 2 г сульфида натрия. Хранят в плотно закрытой полиэтиленовой посуде в холодильнике не более недели.

10.1.13 Раствор диэтилдитиокарбамата натрия

В 50 см 3 дистиллированной воды растворяют 5 г диэтилдитиокарбамата натрия. Хранят не более 2 недель в холодильнике.

10.1.14 Раствор гидрохлорида гидроксиламина

В 100 см 3 дистиллированной воды растворяют 5 г гидрохлорида гидроксиламина. Хранят в плотно закрытой темной склянке в холодильнике в течение месяца.

10.1.15 Раствор соляной кислоты, 4 моль/дм 3

В 330 см 3 дистиллированной воды растворяют 170 см 3 концентрированной соляной кислоты. Раствор устойчив.

10.1.16 Активный уголь

Подготовка активного угля приведена в приложении .

10.1.17 Суспензия гидроксида алюминия

Приготовление суспензии гидроксида алюминия приведено в приложении .

10.2 Установление точной молярной концентрации раствора трилона Б

В коническую колбу вместимостью 250 см 3 с помощью пипетки с одной отметкой вносят 10,0 см 3 раствора хлорида цинка (), добавляют 90 см 3 дистиллированной воды, 5 см 3 аммонийно-аммиачного буферного раствора и 70 - 100 мг индикатора эриохрома черного Т. Содержимое колбы тщательно перемешивают и титруют из бюретки вместимостью 25 см 3 раствором трилона Б до перехода окраски из фиолетово-красной в голубую (синюю).

Молярную концентрацию раствора трилона Б С Тр, моль/дм 3 КВЭ, рассчитывают по формуле

(2)

где C Zn - молярная концентрация раствора хлорида цинка, моль/дм 3 КВЭ;

V T р - объем раствора трилона Б, пошедший на титрование, см 3 ;

V Zn - объем раствора хлорида цинка, см 3 .

11 Выполнение измерений

11.1 Выбор условий титрования

Объём аликвоты пробы воды для выполнения измерений величины жесткости выбирают исходя из предполагаемой величины жёсткости или по результатам оценочного титрования.

Для оценочного титрования отбирают 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, 7 - 10 мг индикатора эриохрома черного Т и титруют раствором трилона Б до перехода окраски из вишнево-красной в голубую. По величине израсходованного на титрование объёма раствора трилона Б выбирают из таблицы соответствующий объем аликвоты пробы воды для выполнения измерений величины жесткости.

Таблица 2 - Объём пробы воды, рекомендуемый для выполнения измерений жесткости

Титрование следует проводить из бюретки подходящей вместимости в зависимости от жесткости воды. Если по результатам оценочного титрования объем трилона Б менее 0,4 см 3 или предполагаемая жесткость менее 0,8 ммоль/дм 3 , используют бюретку вместимостью 5 см 3 ; при объеме трилона Б от 0,4 см 3 до 0,8 см 3 или жесткости от 0,8 до 1,6 ммоль/дм 3 - бюретку вместимостью 10 см 3 ; при объеме трилона более 0,8 см 3 или жесткости более 1,6 ммоль/дм 3 - бюретку вместимостью 25 см 3 . При отсутствии бюретки вместимостью 10 см 3 можно использовать бюретку вместимостью 25 см 3 ; допускается замена бюретки вместимостью 5 см 3 бюреткой вместимостью 10 см 3 , однако замена бюретки вместимостью 5 см 3 бюреткой вместимостью 25 см 3 недопустима.

Допустимое расхождение объемов трилона Б, см 3

От 4 до 12 включ.

Св. 12 до 16 включ.

11.3 Подготовка пробы для выполнения измерений некарбонатной (постоянной) жесткости

Мерную колбу вместимостью 250 см 3 дважды ополаскивают небольшим количеством анализируемой воды, затем заполняют ее этой водой до метки. Из мерной колбы переносят аликвоту пробы в коническую термостойкую колбу вместимостью 500 см 3 и маркером отмечают первоначальный уровень воды. Два-три раза ополаскивают мерную колбу небольшим количеством дистиллированной воды (8 - 10 см 3) и смывы помещают в ту же коническую колбу. Нагревают содержимое конической колбы до кипения, а затем кипятят в течение 1 - 1,5 ч (в зависимости от концентрации гидрокарбонатов). Если при кипячении уровень воды в колбе понижается более, чем на 0,5 см ниже первоначального уровня, в колбу доливают кипящую дистиллированную воду до этой отметки. По окончании кипячения уровень воды в колбе должен быть примерно на 0,5 см ниже первоначального уровня.

Пробу медленно охлаждают до комнатной температуры, а затем фильтруют через складчатый фильтр «синяя лента», предварительно промытый горячей дистиллированной водой, в мерную колбу вместимостью 250 см 3 . Дважды ополаскивают коническую колбу и фильтр холодной дистиллированной водой (примерно по 20 см 3). Доводят раствор в колбе до метки, перемешивают и выполняют титрование в соответствии с .

11.4 Устранение мешающих влияний

± D - границы характеристики погрешности результатов измерений для данной массовой концентрации кальция (таблица ).

Численные значения результата измерений должны оканчиваться цифрой того же разряда, что и значения характеристики погрешности; последние не должны содержать более двух значащих цифр.

12.3 Допустимо представлять результат в виде

при условии D л < D , (5)

где ± D л - границы характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений.

Примечание - Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения D л = 0,84× D с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

12.4 Если одновременно с измерением жесткости проводится выполнение измерений массовой концентрации кальция (например, в соответствии с РД 52.24.403), в анализируемой пробе воды может быть рассчитана массовая концентрация магния. Методика расчета приведена в приложении .

12.5 Результаты измерений оформляют протоколом или записью в журнале по формам, приведенным в Руководстве по качеству лаборатории.

13 Контроль качества результатов измерений при реализации методики в лаборатории

13.1 Общие положения

13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

Оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости, погрешности при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

13.1.2 Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

13.2.1 Контроль повторяемости осуществляют для каждого из результатов измерений, полученных в соответствии с методикой. Для этого отобранную пробу воды делят на две части, и выполняют измерения в соответствии с разделом .

13.2.2 Результат контрольной процедуры r к , ммоль/дм 3 , рассчитывают по формуле

r к = | Х 1 - Х 2 | , (6)

где X 1 , Х 2 - результаты измерений величины общей жесткости в пробе, ммоль/дм 3 .

13.2.3 Предел повторяемости r n , ммоль/дм 3 , рассчитывают по формуле

r n = 2,77 · s r , (7)

где s r - показатель повторяемости, ммоль/дм 3 (таблица ).

13.2.4 Результат контрольной процедуры должен удовлетворять условию

13.3.1 Оперативный контроль процедуры выполнения измерений с использованием метода добавок совместно с методом разбавления пробы проводят, если величина жесткости в рабочей пробе составляет 0,5 ммоль/дм 3 и более. В противном случае оперативный контроль проводят с использованием метода добавок согласно . Для введения добавок используют ГСО или аттестованную смесь кальция и магния (приложение ).

13.3.2 Оперативный контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры К к с нормативом контроля К.

13.3.3 Результат контрольной процедуры К к, ммоль/дм 3 , рассчитывают по формуле

(9)

где - результат контрольного измерения величины жесткости в пробе, разбавленной в h раз, с известной добавкой, ммоль/дм 3 ;

- результат контрольного измерения величины жесткости в пробе, разбавленной в h раз, ммоль/дм 3 ;

- результат измерения величины жесткости в рабочей пробе, ммоль/дм 3 ;

С - величина добавки, ммоль/дм 3 .

13.3.4 Норматив контроля К, ммоль/дм 3 , рассчитывают по формуле

(10)

где - значения характеристик погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие величине жесткости в разбавленной пробе с добавкой (разбавленной пробе, рабочей пробе), ммоль/дм 3 .

13.3.5 Если результат контрольной процедуры удовлетворяет условию:

13.4.1 Контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры К к с нормативом контроля К.

13.4.2 Результат контрольной процедуры К к, ммоль/дм 3 , рассчитывают по формуле

(12)

где - результат контрольного измерения величины жесткости в пробе с известной добавкой, ммоль/дм 3 ;

- результат измерения величины жесткости в рабочей пробе, ммоль/дм 3 ;

С - величина добавки, ммоль/дм 3 .

13.4.3 Норматив контроля погрешности К, мг/дм 3 , рассчитывают по формуле

(13)

где - значения характеристики погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие массовой концентрации кальция в пробе с добавкой (рабочей пробе), мг/дм 3 .

Примечание - Допустимо для расчета норматива контроля использовать значения характеристик погрешности, полученные расчетным путем по формулам

13.4.4 Если результат контрольной процедуры удовлетворяет условию

Таблица Г.1 - Метрологические характеристики аттестованных смесей

Г.3 Средства измерений, вспомогательные устройства

Г.3.1 Весы лабораторные высокого ( II ) класса точности по ГОСТ 24104-2001 .

Г.3.2 Колбы мерные 2 класса точности по ГОСТ 1770-74 вместимостью

250 см 3 - 2 шт.

100 см 3 - 2 шт.

Г.3.3 Пипетки с одной отметкой по ГОСТ 29169-91 вместимостью

5 см 3 - 2 шт.

25 см 3 - 2 шт.

Г.3.4 Цилиндры мерные по ГОСТ 1770-74 вместимостью

250 см 3 - 1 шт.

25 см 3 - 1 шт.

Г.3.5 Стаканы химические полипропиленовые вместимостью

250 см 3 - 1 шт.

100 см 3 - 1 шт.

Г.3.6 Чашка выпарительная № 1 или 2 по ГОСТ 9147-80 .

Г.3.7 Промывалка.

Г.3.8 Палочка стеклянная.

Г.3.9 Стекло часовое или чашка биологическая (Петри) исполнения 2 по ГОСТ 25336-82 .

Г.3.10 Шпатель.

Г.3.11 Эксикатор исполнения 2 с диаметром корпуса 140 мм или 190 мм по ГОСТ 25336-82 .

Г.3.12 Печь муфельная любого типа.

Г.4 Исходные компоненты аттестованных растворов

Г.4.1 Кальций углекислый (карбонат кальция) по ГОСТ 4530-76 , х.ч. Основной компонент - СаСО 3 , массовая доля которого не менее 99 %, молекулярная масса - 100,09.

Г.4.5 Раствор соляной кислоты 1:1 (для приготовления раствора смешивают равные объемы дистиллированной воды и концентрированной соляной кислоты).

Г.5 Процедура приготовления аттестованных растворов

Г.5.1 Приготовление аттестованного раствора кальция

На весах высокого класса точности взвешивают в полипропиленовом стакане вместимостью 250 см 3 31,216 г карбоната кальция с точностью до четвертого знака после запятой. Навеску смачивают дистиллированной водой и добавляют постепенно 120 см 3 соляной кислоты (1:1) при перемешивании. Накрывают стакан чистым часовым стеклом или чашкой Петри и оставляют стоять до растворения.

Полученному раствору приписывают массовую концентрацию кальция 50,00 мг/см 3 , молярную концентрацию 2,495 ммоль/см 3 КВЭ.

Г.5.2 Приготовление аттестованного раствора магния

На весах высокого класса точности взвешивают в полипропиленовом стакане вместимостью 100 см 3 2,544 г MgO , предварительно прокаленного в муфельной печи при 500 °С в течение 3 ч и охлажденного в эксикаторе. Навеску смачивают дистиллированной водой и добавляют 25 см 3 соляной кислоты (1:1) при перемешивании. Оставляют смесь стоять до растворения, накрыв часовым стеклом или чашкой Петри.

После растворения осторожно, по палочке, переносят раствор через воронку в мерную колбу вместимостью 250 см 3 . Три-четыре раза ополаскивают стакан и воронку дистиллированной водой и переносят смывы в ту же колбу. Доводят раствор в колбе дистиллированной водой до метки и перемешивают.

Полученному раствору приписывают массовую концентрацию магния 6,136 мг/см 3 , молярную концентрацию 0,505 ммоль/см 3 КВЭ.

Г.5.3 Приготовление аттестованной смеси АС1-Н

В мерную колбу вместимостью 100 см 3 вносят по 25,0 см 3 растворов кальция и магния пипетками с одной отметкой вместимостью 25 см 3 . Объем раствора доводят до метки на колбе дистиллированной водой и перемешивают.

Полученному раствору приписывают жесткость 750 ммоль/дм 3 .

Г.5.4 Приготовление аттестованной смеси АС2-Н

В мерную колбу вместимостью 100 см 3 вносят по 5,0 см 3 растворов кальция и магния пипетками с одной отметкой вместимостью 5 см 3 . Объем раствора доводят до метки на колбе дистиллированной водой и перемешивают.

Полученному раствору приписывают жесткость 150 ммоль/дм 3 .

Г.6 Расчет метрологических характеристик аттестованных растворов

Г.6.1 Расчет метрологических характеристик аттестованного раствора кальция

Аттестованные значения массовой концентрации кальция С Са, мг/см 3 , и молярной концентрации КВЭ кальция М Са, ммоль/см 3 , рассчитывают по формулам

(Г.1)

(Г.2)

где m - масса навески карбоната кальция, г;

V - вместимость мерной колбы, см 3 ;

40,08 и 100,09 - масса моля кальция и карбоната кальция, соответственно, г/моль.

Расчет предела возможных значений погрешности установления массовой концентрации кальция D Са , мг/см 3 , и молярной концентрации КВЭ кальция D Са-М , ммоль/см 3 , проводят по формулам

(Г.3)

(Г.4)

где С Са - приписанное раствору значение массовой концентрации кальция, мг/см 3 ;

М Са - приписанное раствору значение молярной концентрации КВЭ кальция, ммоль/см 3 ;

D m - предельное значение возможного отклонения массовой доли основного вещества (карбоната кальция) в реактиве от приписанного значения m , %;

m -

D m - предельная возможная погрешность взвешивания, г;

m - масса навески карбоната кальция, г;

D V

V -

Погрешность установления массовой концентрации кальция в растворе равна

Погрешность установления молярной концентрации КВЭ кальция в растворе равна

Г.6.2 Расчет метрологических характеристик аттестованного раствора магния

Аттестованные значения массовой концентрации магния C Mg , мг/см 3 , и молярной концентрации КВЭ магния

M Mg - приписанное раствору значение молярной концентрации КВЭ магния, ммоль/см 3 ;

D m - предельное значение возможного отклонения массовой доли основного вещества (оксида магния) в реактиве от приписанного значения m , %;

m - массовая доля основного вещества в реактиве, приписанная реактиву квалификации х.ч., %;

D m - предельная возможная погрешность взвешивания, г;

m - масса навески оксида магния, г;

D V - предельное значение возможного отклонения объема мерной колбы от номинального значения, см 3 ;

V - номинальный объем используемой мерной колбы, см 3 .

Погрешность установления массовой концентрации магния в растворе равна

Погрешность установления молярной концентрации КВЭ магния в растворе равна

Г.6.3 Расчет метрологических характеристик аттестованных смесей АС1-Н и АС2-Н.

Аттестованное значение величины жесткости H 1 и Н 2 , ммоль/дм 3 , рассчитывают по формуле

(Г.9)

где М Са - приписанное раствору значение молярной концентрации КВЭ кальция, ммоль/см 3 ;

V С а

М Mg - приписанное раствору значение молярной концентрации КВЭ магния, ммоль/см 3 ;

V Mg - объем раствора магния, отбираемый пипеткой, см 3 ;

V 1 - вместимость мерной колбы, см 3 .

Расчет погрешности установления величины жесткости в аттестованных смесях D 1 и D 2 , ммоль/дм 3 , проводят по формуле

(Г.10)

где Н 1(2) - приписанное аттестованным смесям АС1-Н и АС2-Н значение величины жесткости, ммоль/см 3 ;

D Са-М - погрешность установления молярной концентрации КВЭ кальция в растворе, ммоль/см 3 ;

М Са - приписанное раствору значение молярной концентрации КВЭ кальция, ммоль/см 3 ;

D Mg -М - погрешность установления молярной концентрации КВЭ магния в растворе, ммоль/см 3 ;

M Mg - приписанное раствору значение молярной концентрации КВЭ магния, ммоль/см 3 ;

Предельное значение возможного отклонения объема V Ca от номинального значения, см 3 ;

V Ca - объем раствора кальция, отбираемый пипеткой, см 3 ;

- предельное значение возможного отклонения объема V Mg от номинального значения, см 3 ;

V Mg - объем раствора магния, отбираемый пипеткой, см 3 ;

Предельное значение возможного отклонения объема мерной колбы от номинального значения, см 3 ;

V 1 - вместимость мерной колбы, см 3 .

Погрешность установления величины жесткости в аттестованной смеси АС1-Н равна

Погрешность установления величины жесткости в аттестованной смеси АС2-Н равна

Г.7 Требования безопасности

Необходимо соблюдать общие требования техники безопасности при работе в химических лабораториях.

Г.8 Требования к квалификации исполнителей

Аттестованные растворы может готовить инженер или лаборант со средним профессиональным образованием, прошедший специальную подготовку и имеющий стаж работы в химической лаборатории не менее 6 месяцев.

Г.9 Требования к маркировке

На склянки с аттестованными растворами и смесями должны быть наклеены этикетки с указанием условного обозначения аттестованного раствора или смеси, массовой и молярной концентрации кальция и магния либо величины жесткости в растворе, погрешности их установления и даты приготовления.

Г.10 Условия хранения

Аттестованный раствор кальция хранят в плотно закрытой склянке в течение года.

Аттестованный раствор магния хранят в плотно закрытой склянке не более 6 мес.

Аттестованные смеси АС1-Н и АС2-Н хранят в плотно закрытых склянках в течение 3 и 1 мес. соответственно.

Федеральная служба по гидрометеорологии и
мониторингу окружающей среды

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ
«ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ»

СВИДЕТЕЛЬСТВО № 47.24-2007
об аттестации МВИ

Методика выполнения измерений величины жесткости в воде титриметрическим методом с трилоном Б

разработанная ГУ «Гидрохимический институт» (ГУ ГХИ)

и регламентированная РД 52.24.395-2007

аттестована в соответствии с ГОСТ Р 8.563-96 с изменениями 2002 г.

Аттестация осуществлена по результатам экспериментальных исследований

В результате аттестации МВИ установлено:

1. МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

Диапазон измерений, значения характеристик погрешности и ее составляющих (Р = 0,95)

Диапазон измеряемых значений жесткости, X, ммоль/дм 3

Показатель повторяемости (среднеквадратическое отклонение повторяемости) s r , ммоль/дм 3

Показатель воспроизводимости (среднеквадратическое отклонение воспроизводимости) s R , ммоль/дм 3

Показатель правильности (границы систематической погрешности при вероятности Р = 0,95) ± D с, ммоль/дм 3

Показатель точности (границы погрешности при вероятности Р = 0,95) ± D , ммоль/дм 3

От 0,060 до 2,000 включ.

0,004 + 0,0045× Х

0,011 + 0,023× Х

0,019 + 0,017× Х

0,037 + 0,040× Х

Св. 2,00 до 13,00 включ.

0,0045× Х

0,035× X

0,017× Х

0,05 + 0,073·X

2. Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности Р = 0,95

3 При реализации методики в лаборатории обеспечивают:

Оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости и погрешности при реализации отдельно взятой контрольной процедуры);

Контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

Главный метролог ГУ ГХИ А.А. Назарова

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННАЯ ПОЛЯРНАЯ АКАДЕМИЯ

Кафедра геоэкологии

Отчеты по лабораторным работам

По дисциплине: «Химия природных сред»

Выполнила: Новиков Р., 681гр.

Проверила: Зыкова А.А.

Санкт – Петербург

Лабораторная работа № 1 Определение общей жесткости воды

Жесткость воды представляет собой свойство природной воды, зависящее от наличия в ней главным образом растворенных солей кальция и магния. Жесткость, обусловленная присутствием солей кальция, называют кальциевой , зависящую от содержания магния –магниевой . Суммарное содержание этих солей в воде называютобщей жесткостью . Общую жесткость обычно определяют комплексонометрическим титрованием. В зависимости от использования того или иного индикатора находят либо общую жесткость (индикатор - эриохром-черный), либо последовательно кальциевую (индикатор – мурексид) и магниевую (индикатор-эриохром-черный) или по разности. Метод основан на титровании пробы воды раствором двунатриевой соли этилендиаминтетрауксусной кислоты – комплексонIIIили трилон-Б. Жесткость воды выражается числом миллиграмм – эквивалентов(ммоль-экв/л) кальция и магния в одном литре воды.

Приборы и реактивы:

    Бюретка на 10мл, коническая колба 250 мл, пипетки, исследуемые пробы, (контрольная задача и водопроводная вода), индикатор эрихром-черный(смесь индикатора с сухим NaCl), хлоридо-аммиачный буферный раствор, раствор трилона-Б.

Ход работы (при анализе водопроводной воды):

    В коническую колбу объемом 250 мл мерным цилиндром налить 100 мл водопроводной воды. Добавить 5 мл буферной смеси и немного сухого индикатора эриохрома черного

    При непрерывном перемешивании и оттитровать раствором трилона-Б до перехода окраски с красно-фиолетовой в голубую.

    Для точности измерения титруют три раза (погрешность не более 0,01)

Для расчета : Ж (ммоль-экв/л)=Cн трилона ∙V трилона ∙1000/V воды,

где Cн – нормальность раствора трилона-Б

V трилона –объем раствора комплексона, пошедшего на титрование пробы

V воды – объем пробы воды, взятой для определения.

Результаты измерений:

Исследуемый раствор (водопроводная вода)

Ж = 2,52 (ммоль-экв/л)

Вывод: Общая жесткость равна 2,52 ммоль-экв/л. Таким образом, водопроводная вода относится к классу мягких вод.

Лабораторная работа №2 Определение содержания кальция и магния в природных водах

Цель работы - Раздельное определение содержание кальция и магния в природных водах методом комплексометрического титрования.

После определения общей жесткости воды, характеризуемой суммарным числом миллимоль-эквивалентов кальция и магния в 1 л воды, находят отдельно содержание кальция, титруя пробу трилоном-Б в присутствии индикатора (мурексид). Затем, по разности между общей жесткостью и содержанием кальция, вычисляют содержание магния.

Ход работы(при анализе водопроводной воды):

    В коническую колбу на 250 мл мерным цилиндром отмеривают 100 мл исследуемой пробы (водопроводная вода), добавляют 5 мл 2н раствора NaOH и вносят на кончике шпателя небольшое количество индикатора-мурексид

    Титруют раствором трилона- Б (С=0,01 н) до перехода розовой окраски в сине-фиолетовую, не обесцвечивающуюся в течении тридцати сек.)

    Титрование повторяют 3 раза и из полученных значений берут средний результат.

Для расчета: Значение кальциевой жесткости пробы вычисляют по уравнению:

Ж (Ca +2) = (С трилона ∙V трилона /V иссл. пробы)∙ 1000 (ммоль-экв/л)

Ж Mg = Ж общ. – Ж Са (ммоль-экв/л)

Результаты измерений:

Водопроводная вода

Ж (Ca +2 водоп.воды) =(0,05*3,47)/100*1000=1,74(ммоль-экв/л)

Ж (Mg +2водоп.воды) =2,52-1,74=0,78 (ммоль-экв/л)

Метод основан на способности ионов кальция образовывать устойчивые комплексы с трилоном Б в сильнощелочной среде (рН = 12 − 13). Подобный комплекс ионов магния в этой среде разрушается с выделением гидроксида магния. При титровании раствором трилона Б изменение окраски индикатора (мурексида) от лиловой до красно-малиновой свидетельствует о полном связывании ионов кальция:

H 2 Ind 3- + Са 2+ ↔ СаH 2 Ind - ;

красно-малиновый

СаH 2 Ind - + Na 2 H 2 Y ↔ Na 2 СаY + H 2 Ind 3- + 2H + .

Титрование ионов кальция возможно при совместном присутствии ионов тяжелых металлов в концентрациях, не превышающих значений: для меди – 0,2 мг/дм 3 ; цинка, свинца, никеля, марганца, железа, алюминия – 1 мг/дм 3 и магния – 3 мг в определяемом объеме. При более высоких концентрациях ионов тяжелых металлов в пробу добавляют сульфид натрия. Мешающее влияние ионов магния устраняют или уменьшением объема пробы, взятого для анализа, или при высоком содержании магния (соотношение Mg:Ca более 1), осаждением ионов магния раствором едкого натра, имеющим концентрацию 2 моль/дм 3 (рН 12 − 13) в мерной колбе вместимостью 100 см 3 . Для этого 20−40 см 3 пробы разбавляют дистиллированной водой до 90 см 3 и медленно по каплям добавляют раствор NaOH, хорошо перемешивают, при этом незначительное количество ионов кальция соосаждается с Mg(OH) 2 . Объем раствора доводят до метки дистиллированной водой и после отстаивания осадка в течение 1,5 – 2 часов отбирают прозрачную аликвоту для титрования. Для уменьшения потерь кальция время отстаивания не должно превышать 2 часа.

Ход определения. В коническую колбу вместимостью 250 см 3 отмеряют требуемый объем пробы, доводят, если необходимо, до 100 см 3 дистиллированной водой, добавляют 2 см 3 раствора NaOH с массовой долей 0,08 (8 %), 0,1 – 0,2 г индикатора мурекида и медленно титруют раствором трилона Б при интенсивном перемешивании до перехода окраски от красно-малинового цвета к лиловому. Повторяют титрование и, если расхождение между параллельными титрованиями не превышает приведенных в табл. 13.2, за результат принимают среднее значение трилона Б. В противном случае повторяют титрование до получения допустимого расхождения результатов.

Расчет. Массовую концентрацию и количество вещества эквивалента ионов кальция в анализируемой пробе воды находят по формулам:

где m (Ca 2+) – массовая концентрация ионов кальция в воде, мг/дм 3 ;

n (1/2Ca 2+) – количество вещества эквивалента ионов кальция в воде, ммоль/дм 3 ;

c (1/2Na 2 H 2 Y) – молярная концентрация эквивалента трилона Б, моль/дм 3 ;

V (Na 2 H 2 Y) – объем раствора трилона Б, пошедшего на титрование пробы, см 3 ;

M (1/2Ca 2+) − молярная масса эквивалента ионов кальция, мг/ммоль;

V – объем пробы воды, взятый для определения, см 3 .

Массовую концентрацию ионов магния в мг/дм 3 в анализируемой пробе воды определяют по формуле

где m (Mg 2+) − массовая концентрация ионов магния в воде, мг/дм 3 ;

X – общая жесткость воды, ммоль/дм 3 ;

n (1/2Ca 2+) − количество вещества эквивалента ионов кальция в воде, ммоль/дм 3 ;

M (1/2Mg 2+) – молярная масса эквивалента Mg 2+ , мг/ммоль.

Таблица 13.2

Допустимые расхождения между параллельными титрованиями в зависимости от объема раствора трилона Б

В соответствии с ГОСТ Р 52029-2003 жесткость воды выражается в градусах жесткости (ºЖ).

Градус жесткости соответствует концентрации щелочноземельного элемента, численно равной 1/2его моля, выраженной в мг/дм 3 (г/м 3).

Жесткость воды Ж, ºЖ, при раздельном количественном определении ионов щелочноземельных элементов вычисляют по формуле

где m (Ca 2+) – масса кальция в пробе воды, мг/дм 3 ;

m (Mg 2+) – масса магния в пробе воды, мг/дм 3 ;

M (Ca 2+) − молярная масса кальция, мг/моль;

M (Mg 2+) − молярная масса магния, мг/моль.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Гидрохимия

Методика определения ионов кальция и магния в природных водах (определение общей жесткости воды)

Д.Ю. Ковалев

1. Краткая теория

2. Приготовление растворов

3. Выполнение измерений

3.1 Титриметрический метод

3.2 Метод ионообменной хроматографии

1. Краткая теория

Химический анализ природной и питьевой воды показывает, что любая вода представляет собой не чистое вещество с формулой Н 2 О, а смесь большого количества веществ.

Многочисленные анализы природных вод показали, что среди большого числа компонентов, растворенных в них, 90 % солесодержания составляют карбонаты, гидрокарбонаты, хлориды и сульфаты кальция, магния и натрия. О.А. Алекиным предложена классификация природных вод по результатам их химического анализа. По преобладающему аниону воды делятся на три класса: карбонатные (гидрокарбонатные), хлоридные и сульфатные. По преобладающему катиону воды делятся на три группы: кальциевые, магниевые и натриевые.

В природных водах постоянно находятся ионы кальция и магния, обеспечивающие жесткость воды. Источник их поступления в воду - растворение гипса, известняков и доломитов, входящих в состав горных пород. В санитарно-гигиеническом отношении ионы кальция и магния не представляют большой опасности, но чрезмерная жесткость воды делает ее непригодной для бытовых целей, т.к. образующаяся накипь выводит из строя нагревательные элементы электрических систем нагрева воды. Оптимальная жесткость воды - до 7 мг-экв/л.

Для определения ионов кальция и магния используются два метода:

1. титриметрический

2. метод ионообменной хроматографии

1. Наиболее точный и распространенный метод определения общей жесткости -- комплексометрический, основанный на образовании ионами Са 2+ и Mg 2+ прочных внутрикомплексных соединений с трилоном Б. В качестве индикатора при определении общей жесткости используется эриохром черный. В зависимости от общей жесткости концентрация рабочего раствора трилона Б и объем пробы воды могут быть различными.

Для определения кальция в природных водах преимущественно используются трилонометрический метод с индикатором мурексидом.

2. Приготовление растворов

Раствор трилона Б с концентрацией 0,02 моль/дм 3 эквивалента.

Навеску 3,72г. трилона Б растворяют в 1 дм 3 дистиллированной воды. Точную концентрацию устанавливают по стандартному раствору хлорида цинка. Раствор хранят в полиэтиленовой посуде, проверяют его концентрацию не реже 1 раза в месяц.

Раствор хлорида цинка с концентрацией 0,02 моль/ дм 3 эквивалента.

Отвешивают на технических весах около 0,35 г металлического цинка, смачивают его небольшим количеством концентрированной соляной кислоты и сейчас же промывают дистиллированной водой. Цинк сушат в сушильном шкафу при 105 течение 1ч, затем охлаждают и взвешивают на аналитических весах.

Навеску цинка помещают в мерную колбу вместимостью 500 см 3 , в которую предварительно вносят 10-15 см 3 дистиллированной воды и 1,5 см 3 концентрированной соляной кислоты. Цинк растворяют. После растворения цинка объём раствора доводят до метки на колбе дистиллированной водой. Рассчитывают молярную концентрацию эквивалента раствора хлорида цинка C Zn (1/2 ZnCl 2), моль/дм 3 , по формуле:

где m - навеска металлического цинка, г; 32,69 - молярная масса эквивалента Zn 2+ , г/моль; V - объём мерной колбы, см 3 .

Буферный раствор NH 4 Cl +NH 4 OH.

7,0 г хлорида аммония растворяют в мерной колбе вместимостью 500 см 3 в 100 см 3 дистиллированной воды и добавляют 75 см 3 концентрированного раствора аммиака. Объем раствора доводят до метки дистиллированной водой и тщательно перемешивают. Буферный раствор хранят в стеклянной или полиэтиленовой посуде не более 2 месяцев. Гидроксид натрия, 2 моль/дм 3 .

40 г гидроксида натрия растворяют в мерной колбе вместимостью 500 см 3 и раствор доводят до метки дистиллированной водой.

Индикатор эриохром черный Т.

Растереть в ступке 0,25 г эриохрома черного Т с 50 г хлорида натрия.

Индикатор мурексид.

0,5 г мурексида растереть с 100 г хлорида натрия. Водный раствор лучше не готовить, т.к. мурексид нестоек в растворе.

Раствор сульфида натрия, 4%.

2 г сульфида натрия растворяют в 50 см 3 дистиллированной воды. Хранят в плотной закрытой полиэтиленовой посуде не более недели.

Раствор гидрохлорида гидроксиламина.

5 г гидрохлорида гидроксиламина растворяют в 100 см 3 дистиллированной воды. Хранят не более 2 месяцев.

Установление точной концентрации раствора трилона Б.

В коническую колбу вместимостью 250 см 3 вносят 10 см 3 раствора хлорида цинка, добавляют дистиллированной воды приблизительно до 100 см 3 , 5 см 3 буферного раствора и 10-15 мг индикатора эриохрома чёрного Т. Содержимое конической колбы тщательно перемешивают и титруют из бюретки раствором трилона Б до перехода окраски красной в голубую. Концентрацию раствора трилона Б рассчитывают по формуле:

3. Выполнение измерений

3.1 Титриметрический метод

Определение ионов кальция и магния

Устранение мешающих ионов

Для устранения мешающего влияния катионов железа, цинка, меди и олова в пробу добавляют 0,5 мл раствора сульфида натрия.

Для устранения мешающего влияния марганца в пробу добавляют 0,5 мл солянокислого раствора гидроксиламина.

Ход анализа

v Оценочное титрование

Перед выполнением анализа пробы воды с неизвестной величиной жёсткости проводят оценочное титрование. Для этого берут 10 см 3 воды, добавляют 0,5 см 3 буферного раствора, индикатор (эриохром чёрный Т) и титруют до перехода окраски из красной в голубую. По величине израсходованного трилона Б выбирают из таблицы 1 соответствующий объём пробы воды.

ионообменный хроматография вода магний

v Определение суммы кальция и магния

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 5 см 3 буфера, индикатор (эриохром чёрный Т) на шпателе. Сразу же титруют при перемешивании до перехода окраски от винно-красной к синей.

v Определение кальция

К пробе необходимого объёма (см. Оценочное титрование) 100 см 3 добавляют 2 см 3 NaOH (2н) и индикатора (мурексид) на шпателе. Титруют до перехода окраски от красной в фиолетовую. Окраску раствора следует сравнивать с цветом перетитрованного раствора.

где Стр - молярная концентрация эквивалента трилона Б, моль/дм 3 ; V" тр - объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 20,04 - масса эквивалента Ca 2+ ; Vпробы - объем пробы, взятый для анализа, см 3 .

где Стр - молярная концентрация эквивалента трилона Б, моль/дм 3 ; V тр - объем трилона Б, пошедший на титрование с эриохромом черным Т, см 3 (см. Определение суммы кальция и магния); V"тр - объем трилона Б, пошедший на титрование с мурексидом, см 3 (см. Определение кальция); 12,15- масса эквивалента Mg 2+ ; Vпробы- объем пробы, взятый для анализа, см 3 .

v Определение общей жесткости воды

Общую жесткость находят по формуле:

где С тр - молярная концентрация эквивалента трилона Б, моль/дм 3 ; Vтр - объем раствора трилона Б, пошедшего на титрование пробы, см 3 ; Vпробы - объем пробы, взятый для анализа, см 3 .

Метод добавок. Для определения данным методом в пробу вводят добавку, равную 50-150% (желательно 100%) жёсткости воды (см. Определение общей жёсткости воды) ГСО 8206-2002.

Затем высчитывают общую жесткость воды с добавкой.

a. Результаты измерений, полученных в условиях воспроизводимости для пробы 1.

Проба 1: оз. Среднее, с. Озёрное, 85 км от берега, дата: 1.10.13, время: 16.55, t = +3.

Установлена точная концентрация трилона Б: С трилона = 0,002226 (моль/дм 3). При выполнении оценочного титрования объем необходимой пробы соответствует 100 (мл).

V (?Ca 2+ -Mg 2+), (мл)

V (Ca 2+), (мл)

a. Результаты измерений с использованием метода добавок для пробы 1. Общая жёсткость воды: .

Объём добавки:

V (?Ca 2+ -Mg 2+), (мл)

V (Ca 2+), (мл)

Общая жёсткость воды с добавкой: .

Проверка добавки:

3.2 Метод ионообменной Хроматографии

Элюент - метансульфоновая кислота. Метод основан на хроматографическом разделении катионов вследствие их различной подвижности в процессе миграции по ионной хроматографической колонке с последующей регистрацией электропроводности элюата.

Хроматограф подготавливают к работе в соответствии с руководством (инструкцией) по эксплуатации так, чтобы при измерении градуировочных растворов достигалось разделение пиков анализируемых катионов с коэффициентом разделения не менее 1 (приложение В к ГОСТ Р 51392).

Ввод пробы в хроматограф и дальнейшие измерения электропроводности элюата проводят в соответствии с руководством (инструкцией) по эксплуатации. На полученных хроматограммах по времени удерживания пиков идентифицируют содержащиеся в пробе катионы, определяют площади пиков каждого катиона. По полученным градуировочным характеристикам определяют концентрацию каждого катиона в пробе.

Результаты метода ионнообменной Хроматографии

Проба без добавки

Проба c добавкой

Размещено на Allbest.ru

Подобные документы

    Химический состав воды. Общая жёсткость воды: характеристика, методы определения и влияние избыточной жёсткости. Определение количества фторид-ионов, железа и сухого остатка в образце воды. Влияние техногенного загрязнения на состав природных вод.

    научная работа , добавлен 26.10.2011

    Соединения магния, кальция и бария как лекарственные средства. Изменения в группе величины радиусов атомов и ионов, потенциал ионизации. Качественные реакции на ионы магния, кальция, стронция. Биологическая роль магния и кальция, значение для организма.

    реферат , добавлен 14.04.2015

    Порядок и этапы проведения анализа четырех неизвестных растворов на основе характерных реакций. Определение роли и значения в организме химических элементов: натрия, бария, кальция, свинца, магния, хрома, марганца и ртути, характер влияния на человека.

    практическая работа , добавлен 11.04.2012

    Методы определения хлорат-иона. Титриметрический, спектрофотометрический, хроматографический, потенциометрический, полярографический, амперометрический метод. Чувствительность методики, хлорат-иона в речной воде. Загрязнение хлоратами природных водоёмов.

    курсовая работа , добавлен 16.06.2017

    Свойства воды и способы ее умягчения. Требования к жесткости потребляемой воде на теплоэнергетическом производстве. Теоретические основы и методика определения жесткости воды комплексонометрическим методом. Отбор проб, реактивы, выполнение определения.

    курсовая работа , добавлен 07.10.2009

    Разработка и апробация простой в исполнении титриметрической методики определения хлорат-ионов в природных водах, позволяющей определять их концентрацию на уровне предельно допустимых концентраций. Её избирательность и метрологические характеристики.

    дипломная работа , добавлен 26.07.2017

    Условные показатели качества питьевой воды. Определение органических веществ в воде, ионов меди и свинца. Методы устранения жёсткости воды. Способы очистки воды. Приготовление рабочего раствора сернокислого калия. Очистка воды частичным замораживанием.

    практическая работа , добавлен 03.12.2010

    Анализ вещества, проводимый в химических растворах. Условия проведения аналитических реакций. Систематический и дробный анализ. Аналитические реакции ионов алюминия, хрома, цинка, олова, мышьяка. Систематический ход анализа катионов четвертой группы.

    реферат , добавлен 22.04.2012

    Физико-химическая характеристика алюминия. Методика определения меди (II) йодометрическим методом и алюминия (III) комплексонометрическим методом. Оборудование и реактивы, используемые при этом. Аналитическое определение ионов алюминия (III) и меди (II).

    курсовая работа , добавлен 28.07.2009

    Инструментальные методы решения задач химического анализа. Определение ионов Zn2+, Fe3+, Na+: роданильный, пламенно-фотометрический методы; потенциометрическое, кондуктометрическое титрование; люминесцентный анализ. Нефелометрическое определение Cl-ионов.

Цель работы : определить комплексонометрическим методом:

– проба А – общую жесткость воды, ммоль экв/л;

– проба Б – массу кальция и магния в пробе, г.

Сущность работы . Ионы Са 2+ и Mg 2+ образуют комплексонаты, которые устойчивы в щелочной среде, поэтому их титруют стандартным раствором ЭДТА в присутствии аммиачного буфера. Если использовать индикатор эриохром черный Т, то в к. т. т. наблюдается переход окраски раствора от сиреневой (комплексы индикатора с Са 2+ и Mg 2+) к синей (свободная форма индикатора в этих условиях).

Жесткость воды – это суммарный показатель качества воды. Она обусловлена наличием ионов Са 2+ и Mg 2+ . Общая жесткость воды показывает, сколько миллимоль эквивалентов Са 2+ и Mg 2+ в сумме содержится в 1 л воды.

Me 2+ + H 2 Y 2– = MeY 2– + 2H + Þ f экв (Me 2+) = , f экв (H 2 Y 2–) =

Поскольку концентрация Са 2+ и Mg 2+ в воде незначительна, для титрования берут большие аликвоты анализируемой воды (50,00 или 100,00 мл) с помощью специальных пипеток большой вместимости.

Раздельное определениеСа 2+ и Mg 2+ при совместном присутствии в растворе основано на титровании пробы с разными индикаторами в разных условиях.

Сначала определяют суммарное содержание кальция и магния в пробе. С этой целью титруют аликвоту анализируемого раствора комплексоном III с индикатором эриохромом черным Т в среде аммиачного буфера . При этом протекают следующие реакции:

Ca 2+ + H 2 Y 2– = CaY 2– + 2H + ,

Mg 2+ + H 2 Y 2– = MgY 2– + 2H + Þ

Þ f экв (Ca 2+) = , f экв (Mg 2+) = , f экв (H 2 Y 2–) = .

Затем определяют содержание кальция , титруя такую же аликвоту раствором ЭДТА с индикатором мурексидом в сильнощелочной среде. При добавлении щелочи ионы магния маскируются за счет осаждения в виде Mg(OH) 2 ¯ и не реагируют с ЭДТА. Следовательно, титруются только ионы кальция:

Ca 2+ + H 2 Y 2– = CaY 2– + 2H +

Свободная форма индикатора мурексида в этих условиях имеет сиренево-фиолетовую окраску, а комплекс его с кальцием – кирпично-красную. Содержание магния в пробе находят по разности .

Оборудование и реактивы : бюретка, мерный цилиндр (25 мл), стандартный раствор ЭДТА, аммиачный буфер с рН 9, индикатор эриохром черный Т в смеси с NaCl (1: 100). Для анализа пробы А дополнительно : пипетка Мора большой вместимости (50,00 или 100,00 мл), конические колбы большой вместимости (250 мл). Для анализа пробы Б дополнительно : мерная колба, пипетка Мора, конические колбы, гранулированный NaOH, мурексид в смеси с NaCl (1: 100).

Выполнение работы

Проба А. Определение общей жесткости воды . Получают у лаборантов анализируемый раствор в коническую колбу. Отбирают пипеткой аликвоту 50,00 или 100,00 мл и переносят в другую коническую колбу. Прибавляют 20–25 мл аммонийного буфера, индикатор на кончике шпателя и титруют раствором комплексона III до перехода окраски раствора от сиреневой к синей.

По результатам титрования рассчитывают общую жесткость воды (ммоль-экв/л):

Делают вывод о характеристике воды, используя справочные данные (см. &).

Проба Б. Раздельное определение кальция и магния. Получают у лаборантов анализируемый раствор в мерную колбу, доводят до метки и перемешивают.

Для определения суммарной концентрации кальция и магния отбирают пипеткой аликвоту анализируемого раствора в колбу для титрования, добавляют 20–25 мл аммиачного буфера и индикатор эриохром черный Т на кончике шпателя. Титруют раствором ЭДТА до перехода сиреневой окраски раствора в синюю. Усредняют полученные близкие объемы ЭДТА и получают среднее значение объема титранта V 1 (Na 2 H 2 Y), который затрачен на титрование Ca 2+ и Mg 2+ в сумме.

Для определения кальция отбирают пипеткой такую же аликвоту анализируемого раствора, вносят в него 2–3 гранулы NaOH (для создания сильнощелочной среды, проверить с помощью универсальной индикаторной бумаги! ), мурексид на кончике шпателя и титруют раствором ЭДТА до перехода кирпично-красной окраски в сиренево-фиолетовую. Усредняют полученные близкие объемы ЭДТА и получают среднее значение объема титранта V 2 (Na 2 H 2 Y), который затрачен на титрование Ca 2+ . По разности находят объем титранта, пошедший на титрование Mg 2+ :

V 3 (Na 2 H 2 Y) = V 1 (Na 2 H 2 Y) – V 2 (Na 2 H 2 Y).

Исходя из полученных значений объемов V 2 (Na 2 H 2 Y) и V 3 (Na 2 H 2 Y), рассчитывают массу кальция и магния в пробе (г).