Системы несвязного регулирования. Одноконтурные и многоконтурные, связанные и несвязанные системы автоматического управления, прямое и непрямое регулирование Одноконтурные и многоконтурные САУ

ИЗВЕСТИЯ

ГОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО

ИНСТИТУТА имени С. М. КИРОВА

ИССЛЕДОВАНИЕ СИСТЕМЫ СВЯЗАННОГО РЕГУЛИРОВАНИЯ ОДНОГО КЛАССА ОБЪЕКТОВ С РАСПРЕДЕЛЕННЫМИ

ПАРАМЕТРАМИ

В. И. КАРНАЧУК, В. Я. ДУРНОВЦЕВ

(Представлена научным семинаром кафедры ФТФ)

Системы многосвязного регулирования (СМР) в настоящее время находят все большее применение в автоматизации сложных объектов. Обусловлено это тем, что комплексная автоматизация производственных процессов требует перехода от регулирования одного параметра к связанному регулированию нескольких величин, оказывающих влияние друг на друга. Среди подобных систем большое место занимают однотипные СМР, состоящие из нескольких идентичных, одинаково настроенных регуляторов, работающих от общего источника сырья или на общую нагрузку. К однотипным СМР можно отнести многоканальные САР объектов с распределенными параметрами, задачей которых является автоматическая оптимизация распределения параметра. Эта задача не может быть правильно решена, если не будет учтено взаимное влияние регулируемых параметров. Учет взаимного влияния значительно осложняет анализ системы, так как в связанной системе динамика каждого параметра описывается дифференциальным уравнением высокого порядка.

Основоположником теории регулирования нескольких параметров является И. Н. Вознесенский. Он показал, что для ликвидации влияния параметров друг на друга в систему необходимо ввести искусственные связи, компенсирующие влияние естественных связей. В этом случае связанная система превращается в несвязанную, т. е. автономную. Проблема автономности является специфической проблемой, отсутствующей в теории одномерных САР. И. Н. Вознесенский решил эту проблему для объекта первого порядка, управляемого идеальным регулятором. Позднее были найдены физически и технически реализуемые условия автономности для более сложных систем . В этих работах круг рассмотренных объектов, как правило, ограничивается объектами первого порядка. Однако на практике при исследованиях в области регулирования объектов с распределенными параметрами таких, как ректификационная колонна, нефтегазоносный пласт, вулканизационные камеры, различного рода реакторы и т. п., требуется зачастую более сложное приближение.

В настоящей работе рассматриваются некоторые вопросы синтеза двумерной СМР астатического объекта с фазовым упреждением.

когда объект по каждой регулируемой величине описывается диффе ренциальным уравнением второго порядка:

т dЧ dx 2 dt2 dt

коТi -У- +коу. dt

Структурная схема системы связанного регулирования представлена на рис. 1. Система предназначена для поддержания заданного значения параметра X в двух различных областях большого объекта.

2 регулятор w

Рис. 1. Структурная схема двумерной СМР

Объект регулирования представляет собой многосвязную систему с ^-структурой по принятой классификации . Передаточные функции объектов по каждому прямому каналу равны:

К0(Т,р+1) ■

СР) - ^02 (Р)

Р(Т2Р+> 1)

Взаимосвязь регулируемых параметров представлена на структурной схеме через постоянные коэффициенты Li2 = ¿2b хотя в общем случае она не является инвариантной по времени. Рассматриваются интегральные регуляторы с передаточной функцией:

Сигналы управления регуляторы получают от инерционных датчиков (термопар), расположенных вблизи соответствующих регулирующих органов. Передаточные функции датчиков:

Wn (p) = WT2(p) =

Анализ связанной системы с помощью уравнений движения, записанных даже в операторной форме, является неудобным ввиду высокого порядка уравнений. Гораздо большими удобствами, особенно для структурного синтеза, обладает матричный метод записи уравнений.

При матричной форме записи уравнение для объекта с У-струк-турой имеет вид:

■ WciWcalia^i 1 - W 01^02^12^21

1 - 1^0] 1 - 12^21

а ^ и матрицы-столбцы регулируемой и регулирующей величины соответственно.

Для регулятора можно записать:

^^(¿у-Х). (6)

и%(р)=Г 0 [о

5 - преобразующая матрица управляющих воздействий; у - матрица-столбец управляющих воздействий.

Элементы матриц и 5 могут быть получены после несложных структурных преобразований:

р(Тар+\)(ТТр+\)

Тогда уравнение замкнутой СМР можно записать в следующем виде (здесь и дальше будем полагать, что возмущения, действующие на систему / = 0):

Х = (/ + Г0г р)"1 - W оГ р5Г, (7)

где / - единичная матрица.

Из (7) можно получить характеристическое уравнение замкнутой СМР, если приравнять нулю детерминант матрицы (/ + WqWp):

| / + W0WP | = 0. (8)

Для СМР пока не найдено достаточно общих критериев проверки устойчивости. Определение корней характеристического уравнения (8) также является довольно громоздкой задачей, так как можно показать, что даже в двумерном случае приходится решать уравнение десятого порядка. При таких условиях применение средств вычислительной техники для расчета СМР является не только желательным, но и необходимым. Особенно велико значение аналоговых моделей для решения задач синтеза СМР, обладающих определенными заданными свойствами, и прежде всего автономных СМР. Известно, что реализация условий автономности является зачастую невозможной, во всяком случае для каждой конкретной системы нахождение условий автономности, которые можно было бы реализовать достаточно простыми звеньями, является самостоятельной задачей. Из выражения (7) видно, что условия автономности сводятся к диагонализации матрицы

Ф, = (/ + ^р)-1" wQwps.

В этом случае уравнения СМР распадаются на я независимых уравнений. Очевидно, что матрица Фу будет диагональной только в том случае, если будет диагональной матрица W0Wpj являющаяся передаточной матрицей разомкнутой СМР. Для реализации этих условий в СМР вводятся искусственные компенсирующие связи, передаточные

Рис. 2. Электронная модель автономной СМР,

функции которых могут быть определены из более удобной для этих целей записи матричного уравнения СМР :

Фу= ^о Гр(5-Фу). (9)

Существует большое число вариантов осуществления компенсирующих связей. Однгко расчеты, проведенные согласно уравнению (9), показывают, что наиболее удобным для реализации является вариант структурной схемы, когда перекрестные связи накладываются между входами усилителей регуляторов. Для этого случая передаточные функции компенсирующих связей имеют вид:

/Сю (/>) = - №«¿12; К2\{р) = -

С учетом выражения (2) имеем: * и (Р) <= К21 (р) =

Для исследования двумерной СМР была использована электронная модель системы, собранная на базе аналоговой установки ЭМУ-8. Схема электронной модели СМР представлена на рис. 2. Числовые значения параметров были приняты следующие: а;о=10; КуК^/(г== 0,1; Тх = 10 сек; Г2 = 0,1 сек; Тт = 0,3 Тг = 0,5 се/с; I = 0,1 0,9.

Рис. 3. Кривые переходных процессов в каналах неавтономной (а) и автономной (в) СМР

Исследования модели показали, что система без компенсирующих связей остается устойчивой до значения величины взаимосвязи ¿ = 0,5. Дальнейшее увеличение L приводит к расходящимся колебаниям регулируемой величины. Однако даже при L <0,5 характер переходного процесса в системе является неудовлетворительным. Полное время успокоения составляет 25-ъЗО сек при максимальном выбросе 50%. Введение перекрестных связей, соответствующих условиям автономности, позволяет резко улучшить качество регулирования.

Как видно из графиков (рис. 3) чувствительность каждого канала к изменению уставки в соседнем канале заметно снижается. Длительность переходного процесса и величина максимального выброса могут быть уменьшены снижением коэффициента усиления усилителей обоих каналов в 2 раза по сравнению с коэффициентом усиления, принятым для несвязанной отдельной системы.

1. Найдены условия автономности, реализуемые простыми активными ЯС-цепями для СМР объектов второго порядка- с фазовым упреждением.

2. Анализ сложных СМР с помощью аналоговых вычислительных машин позволяет выбрать оптимальные значения параметров СМР.

Предложена электронная модель двумерной автономной СМР» Показано влияние величины взаимосвязи на устойчивость системы.

ЛИТЕРАТУРА

1. М. В. Мееров, Системы многосвязного регулирования. Изд. «Наука», 1965.

2. В. Т. Морозовский. «Автоматика и телемеханика», 1962, № 9.

3. М. Д. М е з а р о в и ч. Многосвязные системы регулирования. Труды I конгресса ИФАК, Изд. АН СССР, 1961.

Связанные системы регулирования включают кроме основных регуляторов дополнительные динамические компенсаторы. Расчет и наладка таких систем гораздо сложнее, чем одноконтурных АСР, что препятствует их широкому применению в промышленных системах автоматизации.

Рассмотрим методы расчета многосвязных систем регулирования на примере объекта с двумя входами и двумя выходами.

3.1.1.Синтез несвязанного регулирования

Структурная схема системы представлена на рисунке 3.1 Преобразование системы регулирования двух координат к эквивалентным одноконтурным АСР дано на рисунке 3.2

Рисунок 3.1 - Структурная схема несвязного регулирования со взаимосвязанными координатами

Рисунок 3.2 - Преобразование системы регулирования двух координат к эквивалентным одноконтурным АСР

а - эквивалентный объект для первого регулятора; б - эквивалентный объект для второго регулятора.

Выведем передаточную функцию эквивалентного объекта в одноконтурной АСР с регулятором R1. Как видно, такой объект состоит из основного канала регулирования и связанной с ним параллельно сложной системы, включающей второй замкнутый контур регулирования и два перекрестных канала объекта. Передаточная функция эквивалентного, объекта имеет вид:

Второе слагаемое в правой части уравнения (7) отражает влияние второго контура регулирование на рассматриваемую и по существу является корректирующей поправкой к передаточной функции прямого канала.

Аналогично для второго эквивалентного объекта получим передаточную функцию в виде:

На основе формул можно предположить, что если на какой-то частоте модуль корректирующей поправки будет пренебрежимо мал по сравнению с амплитудно-частотной характеристикой прямого канала, поведение эквивалентного объекта на этой частоте будет определятся прямым каналом.

Наиболее важно значение поправки на рабочей частоте каждого контура. В частности, если рабочие частоты двух контуров регулирования co p i и оз р2 существенно различны, то можно ожидать, что взаимное влияние их будет незначительным при условии:

|W п2 (iω pl)| << |W 11 (iω pl)| ; (9)

Где |W п2 (iω pl)| =

Наибольшую опасность представляет случай, когда инерционность прямых и перекрестных каналов приблизительно одинакова. Пусть например, Wn(p)=W12(p)=W21(p)=W22(p)=W(p). Тогда для эквивалентных объектов при условии, что R1(p)=R2(p)=R(p), получим передаточные функции:

частотные характеристики

(11)

На границе устойчивости, согласно критерию Найквиста получим:

или ; (12)

Откуда =l или |R(iω)|=0.5/|W(iω)|

Так, настройка П - регулятора, при которой система находится на границе устойчивости, вдвое меньше, чем в одноконтурной АСР.

Для качественной оценки взаимного влияния контуров регулирования используют комплексный коэффициент связанности:

;(13)

который обычно вычисляют при нулевой частоте (т.е. в установившихся режимах) и на рабочих частотах регуляторов co p i и со Р 2. В частности, при ш=0 значение кс В определяется отношением коэффициентов усиления по перекрестным и основным каналам:

ксв (0)=Ri2 R21 /(R11 R22); (14) Если на этих частотах кс В =0, то объект можно рассматривать как односвязный, при кс В >1 целесообразно поменять местами прямые и перекрестные каналы; 0<кс В <1 расчет одноконтурных АСР необходимо вести по передаточным функциям эквивалентных объектов (7) и (8).

Рассчитаем кс В для нашего варианта:

kcв = (ki2*k2i)/(k11*k22)=(0.47*0.0085)/(0.015*3.25)~0.11


3.1.2 Системы связанного регулирования

На рисунке 8 представлены структурные схемы автономных АСР

Рисунок 3.3 – структурные схемы автономных АСР

а - компенсация воздействий от второго регулятора в первом контуре регулирования;

б - компенсация воздействий от первого регулятора во втором контуре регулирования;

в - автономная система регулирования двух координат. Рисунок Рисунок 8 - Структурные схемы автономных АСР

2. Классификация АСР. Принципы управления.

Управление - это целенаправленное воздействие на объект, которое обеспечивает его оптимальное (в определенном смысле) функционирование и количественно оценивается величиной критерия (показателя) качества. Критерии могут иметь технологическую или экономическую природу (производительность технологической установки, себестоимость продукции или т. п.).

Во время работы выходные величины отклоняются от заданных значений под действием возмущений z В и появляется рассогласование между текущими у Т и заданными и 3 значениями выходных величин объекта. Если при наличии возмущений z В объект самостоятельно обеспечивает нормальное функционирование, т. е. самостоятельно устраняет возникающее рассогласования у Т -и 3 , то он не нуждается в управлении . Если же объект не обеспечивает выполнения условий нормальной работы, то для нейтрализации влияния возмущений на него налагают управляющее воздействие х Р , изменяя с помощью исполнительного устройства материальные или тепловые потоки объекта . Таким образом, в процессе управления на объект наносятся воздействия, которые компенсируют возмущения и обеспечивают поддержание нормального режима его работы.

Регулированием называют поддержание выходных величин объекта вблизи требуемых постоянных или переменных значений с целью обеспечения нормального режима его работы посредством подачи на объект управляющих воздействий.

Автоматическое устройство, обеспечивающее поддержание выходных величин объекта вблизи требуемых значений, называют автоматическим регулятором .

По принципу регулирования АСР делят на действующие по отклонению, по возмущению и по комбинированному принципу.

По отклонению . В системах, работающих по отклонению регулируемой величины от заданного значения (рис. 1-2, а ), возмущение z вызывает отклонение текущего значения регулируемой величины у от ее заданного значения и. Автоматический регулятор АР сравнивает значения у и и, при их рассогласовании вырабатывает регулирующее воздействие х соответствующего знака, которое через исполнительное устройство (на рис. не показано) подается на объект регулирования ОР, и устраняет это рассогласование. В системах регулирования по отклонению для формирования регулирующих воздействий необходимо рассогласование, в этом состоит их недостаток, поскольку задача регулятора состоит именно в том, чтобы не допускать рассогласование. Однако на практике такие системы получили преимущественное распространение, так как регулирующее воздействие в них осуществляется независимо от числа, вида и места появления возмущающих воздействий. Системы регулирования по отклонению являются замкнутыми .

По возмущению. При регулировании по возмущению (рис 1-2, б) регулятор АР В получает информацию о текущем значении основного возмущающего воздействия z 1 . При измерении его и несовпадении с номинальным значением и В регулятор формирует регулирующее воздействие х, направляемое на объект. В системах, действующих по возмущению, сигнал регулирования проходит по контуру быстрее, чем в системах, построенных по принципу отклонения, вследствие чего возмущающее воздействие может быть устранено еще до появления рассогласования. Однако реализовать регулирование по возмущению для большинства объектов химической технологии практически не представляется, возможным, так как это требует учета влияния всех возмущений объекта (z 1 , z 2 , …) число которых, как правило, велико; кроме того, некоторые из них не могут быть оценены количественно. Например, измерение таких возмущений как изменение активности катализатора, гидродинамической обстановки в аппарате, условий теплопередачи через стенку теплообменника и многих других наталкивается на принципиальные трудности и часто неосуществимо. Обычно учитывают основное возмущение, например, по нагрузке объекта.

Кроме того, в контур регулирования системы по возмущению сигналы о текущем значении регулируемой величины у не поступают, поэтому с течением времени отклонение регулируемой величины от номинального значения может превысить допустимые пределы. Системы регулирования по возмущению являются разомкнутыми .

По комбинированному принципу. При таком регулировании, т. е. при совместном использовании принципов регулирования по отклонению, и по возмущению (рис. 1-6, в ), удается получить высококачественные системы. В них влияние основного возмущения z 1 нейтрализуется регулятором АР В, работающим по принципу возмущения, а влияние других возмущений (например, z 2 и др.)-регулятором АР, реагирующим на отклонение текущего значения реагируемой величины от заданного значения.

По числу регулируемых величин АСР делят на одномерные и многомерные. Одномерные системы имеют по одной регулируемой величине, вторые - по несколько регулируемых величин.

В свою очередь многомерные системы могут быть разделены на системы несвязанного и связанного регулирования. В первых из них регуляторы непосредственно не связаны между собой и воздействуют на общий для них объект регулирования раздельно. Системы несвязанного регулирования обычно используются, когда взаимное влияние регулируемых величин объекта мало или практически отсутствует. В противном случае применяют системы связанного регулирования, в которых регуляторы различных величин одного технологического объекта связаны между собой внешними связями (вне объекта) с целью ослабления взаимного влияния регулируемых величин. Если при этом удается полностью исключить влияние регулируемых величин одна на другую, то такая система связанного регулирования называется автономной .

По числу контуров прохождения сигналов АСР делят на одноконтурные и многоконтурные. Одноконтурными называются системы, содержащие один замкнутый контур, а многоконтурными - имеющие несколько замкнутых контуров

По назначению (характеру изменения задающего воздействия) АСР подразделяются на системы автоматической стабилизации, системы программного управления и следящие системы.

Системы автоматической стабилизации предназначены для поддержания регулируемой величины на заданном значении, которое устанавливается постоянным (u =const). Это наиболее распространенные системы.

Системы программного управления построены таким образом, что заданное значение регулируемой величины представляет собой известную заранее функцию времени u=f(t) . Они снабжаются программными датчиками, формирующими величину и во времени . Такие системы используются при автоматизации химико-технологических процессов периодического действия или процессов, работающих по определенному циклу.

В следящих системах заданное значение регулируемой величины заранее не известно и является функцией внешней независимой технологической величины u=f(y 1). Эти системы служат для регулирования одной технологической величины (ведомой ), находящейся в определенной зависимости от значений другой (ведущей ) технологической величины. Разновидностью следящих систем являются системы регулирования соотношения двух величин, например, расходов двух продуктов. Такие системы воспроизводят на выходе изменение ведомой величины в определенном соотношении с изменением ведущей. Эти системы стремятся устранить рассогласование между значением ведущей величины, умноженным на постоянный коэффициент, и значением ведомой величины.

По характеру регулирующих воздействий различают непрерывные АСР, релейные и импульсные.

Непрерывные АСР построены так, что непрерывному изменению входной величины системы соответствует непрерывное изменение величины на выходе каждого звена.

Релейные (позиционные) ACP имеют в своем составе релейное звено, которое преобразует непрерывную входную величину в дискретную релейную, принимающую только два фиксированных значения: минимально и максимально возможное . Релейные звенья позволяют создавать системы с очень большими коэффициентами усиления. Однако в замкнутом контуре регулирования наличие релейных звеньев приводит к автоколебаниям регулируемой величины с определенными периодом и амплитудой. Системы с позиционными регуляторам являются релейными.

Импульсные АСР имеют в своем составе импульсное звено, которое преобразует непрерывную входную величину в дискретную импульсную, т. е. в последовательность импульсов с определенным периодом их чередования . Период появления импульсов задается принудительно. Входной величине пропорциональны амплитуда или длительность импульсов на выходе. Введение импульсного звена освобождает измерительное устройство системы от нагрузки и позволяет применять на выходе маломощное, но более чувствительное измерительное устройство, реагирующее на малые отклонения регулируемой величины, что приводит к повышению качества работы системы.

В импульсном режиме возможно построение многоканальных схем, при этом уменьшается расход энергии на приведение в действие исполнительного устройства.

Системы с цифровым вычислительным устройством в замкнутом контуре регулирования также работают в импульсном режиме, поскольку цифровое устройство выдает результат вычисления в виде импульсов, следующих через некоторые промежутки времени, необходимые для проведения вычислений. Это устройство применяют, когда отклонение регулируемой величины от заданного значения должно вычисляться по показаниям нескольких измерительных приборов или когда в соответствии с критериями наилучшего качества работы системы необходимо вычислять программу изменения регулируемой величины.


В настоящее время существует целое множество систем автоматического регулирования (САР) или как их еще называют – системы автоматического управления (САУ). В данной статье рассмотрим некоторые способы регулирования и виды САУ.

Прямое и непрямое регулирование

Как известно, всякая САУ состоит из регулятора и объекта регулирования. В регуляторе имеется чувствительный элемент, который отслеживает изменения регулируемой величины от величины заданного сигнала управления. В свою очередь, чувствительный элемент производит воздействие на регулирующий орган, который в свою очередь изменяет параметры системы таким образом, чтоб значение заданной и регулируемой величины стали одинаковыми. В самых простых регуляторах воздействие чувствительного элемента на регулирующий орган происходит непосредственно, то есть они напрямую соединены. Соответственно такие САР называют системами прямого регулирования, а регуляторы – регуляторами прямого действия, как это показано ниже:

В такой системе энергия, необходимая для перемещения задвижки, регулирующей подачу воды в бассейн, поступает непосредственно от поплавка, который здесь будет чувствительным элементом.

В САР непрямого регулирования для организации перемещения органа регулирования используют вспомогательные устройства, использующие для своей работы дополнительные источники энергии. В такой системе чувствительный элемент будет воздействовать на орган управления вспомогательного устройства, которое, в свою очередь, переведет регулирующий орган в нужное положение, как показано ниже:

Здесь поплавок (чувствительный орган) воздействуют на контакт обмотки возбуждения электродвигателя, который вращает задвижку в нужном направлении. Такие системы применяют, когда мощности чувствительного элемента не хватает для управления рабочим механизмом или необходимо иметь очень высокую чувствительность элемента измерения.

Одноконтурные и многоконтурные САУ

САР современные очень часто, практически всегда, имеют параллельные корректирующие устройства или местные обратные связи, как это показано ниже:

САР, в которых регулированию подлежит только одна величина, и они имеют только одну главную обратную связь (один контур регулирования) называют одноконтурными. В таких САУ воздействие, приложенное к какой-то точке системы, может обойти всю систему и вернутся к первоначальной точке пройдя только по одному пути обхода:

А САУ, в которых, помимо главного контура имеются еще местные или главные обратные связи именуют многоконтурными. Обратно одноконтурным, в многоконтурных системах воздействие, приложенное к какой-то точке системы, может обойти систему, и вернутся в точку приложения воздействия по нескольким контурам системы.

Системы связанного и несвязанного автоматического регулирования

Системы, в которых регулированию подлежит несколько величин (многомерные САУ), можно разделить на связанные и несвязанные.

Системы несвязанного регулирования

Системы, в которых регуляторы, предназначенные для регулирования разных величин, несвязанных между собой и могут взаимодействовать через общий объект регулирования, называют системами несвязанного регулирования. Подразделяют системы несвязанного регулирования на независимые и зависимые.

В зависимых изменение одной из величин подлежащей управлению влечет за собой изменение остальных величин подлежащих управлению. Поэтому в таких устройствах нельзя рассматривать различные параметры управления отдельно друг от друга.

Примером такой системы может послужить самолет с автопилотом, у которого имеется отдельный канал управления рулями. При отклонении самолета от курса автопилот вызовет отклонение руля поворота. Автопилот отклонит элероны, при этом отклонение элерона и руля поворота приведет к увеличению лобового сопротивления самолета, при этом произойдет отклонение руля высоты. Таким образом, нельзя рассматривать по отдельности процессы управления курсом, тангажом и боковым креном даже не смотря на то, что каждый из них имеет свой канал управления.

В независимых системах несвязанного регулирования все наоборот, каждая из величин подлежащих регулированию не будет зависеть от изменения всех остальных. Такие процессы управления можно рассматривать отдельно друг от друга.

Примером может послужить САУ угловой скорости гидротурбины, где напряжение обмотки генератора и скорости турбины регулируются независимо друг от друга.

Системы связанного регулирования

В таких системах регуляторы разных величин между собой имеют связи, которые взаимодействуют вне объекта регулирования.

Для примера рассмотрим электрический автопилот ЭАП, упрощенная схема которого показана ниже:

Назначение его – поддержание тангажа, курса и крена самолета на заданном уровне. В данном примере мы рассмотрим функции автопилота относящиеся только к поддержанию заданного курса, тангажа, крена.

Гидрополукомпас 12 выполняет роль чувствительного элемента, отслеживающего отклонение самолета от курса. Основная его часть – гироскоп, ось которого направляют вдоль заданного курса. Когда самолет начинает отклонятся от курса, ось гироскопа начинает воздействовать на связанные при помощи рычага 11 ползунки датчиков реостатных курса 7 и поворота 10, сохраняя при этом свое положение в пространстве. Корпус самолета вместе с датчиками 7 и 10, в свою очередь, смещаются относительно оси гороскопа, соответственно возникает разница между положением гироскопа и корпусом самолета, что улавливается датчиками 7 и 10.

Элементом, который будет воспринимать отклонение самолета от заданного в пространстве курса (горизонтальной или вертикальной плоскости) будет гировертикаль 14. Основная его часть такая же, как и в предыдущем случае – гироскоп, ось которого перпендикулярна плоскости горизонтальной. Если самолет начинает отклонятся от горизонта, в продольной оси начнется смещения ползунка датчика тангажа 13, а при его отклонении в плоскости горизонтальной произойдет смещение датчиков крена 15-17.

Органами, которые осуществляют управление самолетом, являются рули управления 1, высоты 18 и элероны 19, а исполняющими элементами, которые ведут управление положением рулей, являются рулевые машинки курса, тангажа и крена. Принцип работы всех трех каналов автопилота полностью аналогичен. С потенциометрическим датчиком связана рулевая машинка каждого из рулей. Основной потенциометрический датчик (смотри схему ниже):

Соединяется с соответствующим датчиком обратной связи по мостовой схеме. К усилителю 6 подключают диагональ моста. При отклонении самолета от курса полета ползунок основного датчика сместится и в диагонали моста появится сигнал. В результате появления сигнала произойдет срабатывание электромагнитного реле на выходе усилителя 6, что приведет к замыканию цепи муфты электромагнитной 4. Барабан 3 машинки, в цепи которой сработало реле, сцепится с валом непрерывно вращающегося электродвигателя 5. Барабан начнет вращаться и тем самым наматывать или разматывать (зависит от направления вращения) тросы, которые вращают соответствующий руль самолета, и при этом будут перемещать щетку потенциометра обратной связи (ОС) 2. Когда величина смещения ОС 2 станет равной величине смещения щетки потенциометрического датчика, сигнал в диагонали данного моста станет равным нулю и движение руля прекратится. При этом руль самолета повернется в положение, необходимое для смещения самолета на заданный курс. По мере устранения рассогласования щетка основного датчика возвратится обратно в среднее положение.

Выходные каскады автопилота идентичны, начиная от усилителей 6 и заканчивая рулевыми машинами. А вот входные немного разные. Ползунок датчика курса связывается с гирополукомпасом не жестко, а с помощью демпфера 9 и пружины 8. Из-за этого получаем не только перемещение, пропорциональное смещению от курса, но и дополнительное, пропорциональное первой производной отклонения по времени. Помимо того, во всех каналах помимо основных датчиков, предусматриваются и дополнительные, которые реализуют связанное управление по всем трем осям, то есть координируют действия всех трех рулей. Такое подключение обеспечивает алгебраическое сложение сигналов основных и дополнительных датчиков на входе усилителя 6.

Если рассматривать канал управления курсом, то вспомогательными датчиками будут служить датчики крена и разворота, которые управляются летчиком вручную. В канале крена – дополнительные датчики поворота и разворота.

Влияние каналов управления друг на друга приводит к тому, что при движении самолета изменение его крена вызовет изменение тангажа и наоборот.

Нужно помнить, что автономной называют САР, если она имеет такие связи между своими регуляторами, что при изменении одной из величин остальные останутся неизменными, то есть изменение одной величины не влечет за собой автоматическое изменение остальных.

При анализе сложных систем автоматического регулирования особое значение приобретают их структурные схемы, показывающие точки приложения воздействий и возможные пути распространения сигналов, осуществляющих взаимодействие между элементами системы.

Структурные схемы состоят из следующих структурных элементов:

динамических, осуществляющих некоторую функциональную или операторную связь между их входными и выходными сигналами;

преобразующих, служащих для преобразования характера или структуры сигналов;

сравнения, в которых происходит вычитание или сложение сигналов;

точек разветвления, в которых путь распространения сигнала разветвляется на несколько путей, ведущих к различным точкам системы;

связей или линий структурной схемы, указывающих направления распространения сигналов;

точек приложения воздействий;

логических, осуществляющих логические операции.

Выше нами указывалось, что всякая система автоматического регулирования согласно самому принципу ее действия всегда

имеет, по крайней мере, одну обратную связь, служащую для сравнения действительного и требуемого значения регулируемой величины. Такого рода обратную связь мы условились называть главной.

Нужно, однако, заметить, что современные системы автоматического регулирования, помимо главных обратных связей, число которых равно числу регулируемых величин, часто имеют еще несколько вспомогательных или местных обратных связей. Системы автоматического регулирования с одной регулируемой величиной, имеющие только одну главную обратную связь и не имеющие местных обратных связей, называют одноконтурными. В одноконтурных системах воздействие, приложенное к какой-либо точке, может обойти систему и вернуться в первоначальную точку, следуя только по одному пути обхода (см. рис. II.8). Системы автоматического регулирования, имеющие, помимо одной главной обратной связи, еще одну или несколько главных или местных обратных связей, называют многоконтурными. Многоконтурные системы характеризуются тем, что в них воздействие, приложенное к какой-либо точке, может обойти систему и вернуться в первоначальную точку, следуя по нескольким различным путям обхода.

В качестве примера многоконтурной (двухконтурной) системы автоматического регулирования с одной регулируемой величиной можно привести следящую систему, в которой, помимо главной обратной связи, служащей для образования сигнала ошибки и осуществляемой при помощи сельсина-датчика и сельсина-приемника, имеется еще местная обратная связь; последняя осуществляется при помощи тахогенератора и приключенного к ней RС-контура, напряжение с выхода которого вычитается из сигнала ошибки.

Примером многоконтурной системы автоматического регулирования с несколькими регулируемыми величинами является система регулирования авиационного двигателя, в которой регулируемыми величинами могут быть число оборотов двигателя, давление наддува, угол опережения зажигания, температура масла, температура охлаждающей жидкости и другие величины.

Причины введения местных обратных связей в систему автоматического регулирования бывают самые различные. Так, например, их применяют в корректирующих элементах для преобразования сигнала в соответствии с требуемым законом регулирования, в усилительных элементах - для линеаризации, понижения уровня шумов, понижения выходного сопротивления, в исполнительных элементах - для повышения мощности.

Обратные связи, охватывающие несколько последовательно соединенных элементов системы, могут вводиться для придания им требуемых динамических свойств.

Многомерные системы автоматического регулирования, т. е. системы с несколькими регулируемыми величинами, подразделяют

на системы несвязанного и связанного регулирования.

Системами несвязанного регулирования называют такие, в которых регуляторы, предназначенные для регулирования различных величин, не связаны друг с другом и могут взаимодействовать лишь через общий для них объект регулирования. Системы несвязанного регулирования, в свою очередь, можно подразделить на зависимые и независимые.

Зависимые системы несвязанного регулирования характеризуются тем, что в них изменение одной из регулируемых величин зависит от изменения остальных. Вследствие этого в таких системах процессы регулирования различных регулируемых величин нельзя рассматривать независимо, изолированно друг от друга.

Примером зависимой системы несвязанного регулирования может служить самолет с автопилотом, имеющий самостоятельные каналы управления рулями. Предположим, например, что самолет отклонился от заданного курса. Это вызовет благодаря наличию автопилота отклонение руля поворота. При возвращении к заданному курсу угловые скорости обеих несущих поверхностей самолета, а следовательно, и действующие на них подъемные силы сделаются неодинаковыми, что вызовет крен самолета. При этом автопилот отклонит элероны. В результате отклонений руля поворота и элеронов лобовое сопротивление самолета возрастет. Поэтому он начнет терять высоту, и его продольная ось отклонится от горизонтали. При этом автопилот отклонит руль высоты.

Таким образом, в рассмотренном примере процессы регулирования трех регулируемых величин - курса, поперечного крена и продольного крена, - строго говоря, нельзя считать независимыми друг от друга, несмотря на наличие самостоятельных каналов управления.

Независимая система несвязанного регулирования характеризуется тем, что в ней изменение каждой из регулируемых величин не зависит от изменения остальных, благодаря чему процессы регулирования различных величин можно рассматривать изолированно друг от друга. В качестве примера независимых систем несвязанного регулирования часто можно рассматривать систему регулирования числа оборотов гидротурбины и систему регулирования напряжения вращаемого ею синхронного генератора. Процессы регулирования в этих системах независимы, вследствие того, что процесс регулирования напряжения обычно протекает во много раз быстрее, чем процесс регулирования числа оборотов.

Системами связанного регулирования называют такие системы, в которых регуляторы различных регулируемых величин имеют друг с другом взаимные связи, осуществляющие взаимодействие между ними вне объекта регулирования.

Систему связанного регулирования называют автономной, если связи между входящими в ее состав регуляторами

таковы, что изменение одной из регулируемых величин в процессе регулирования не вызывает изменения остальных регулируемых величин.