Гидравлический расчёт системы водяного отопления. Эксплуатация тепловых сетей Автономные системы отопления

По результатам расчета водопроводных сетей для различных режимов водопотребления определяются параметры водонапорной башни и насосных агрегатов, обеспечивающих работоспособность системы, а также свободные напоры во всех узлах сети.

Для определения напора в точках питания (у водонапорной башни, на насосной станции) необходимо знать требуемые напоры потребителей воды. Как указывалось выше, минимальный свободный напор в сети водопровода населенного пункта при максимальном хозяйственно-питьевом водоразборе на вводе в здание над поверхностью земли при одноэтажной застройке должен быть не менее 10 м (0,1 МПа), при большей этажности на каждый этаж необходимо добавлять 4 м.

В часы наименьшего водопотребления напор для каждого этажа, начиная со второго, допускается принимать 3 м. Для отдельных многоэтажных зданий, а также групп зданий, расположенных в повышенных местах, предусматривают местные установки подкачки. Свободный напор у водоразборных колонок должен быть не менее 10 м (0,1 МПа),

В наружной сети производственных водопроводов свободный напор принимают по техническим характеристикам оборудования. Свободный напор в сети хозяйственно-питьевого водопровода у потребителя не должен превышать 60 м, в противном случае для отдельных районов или зданий предусматривают установку регуляторов давления или зонировании системы водоснабжения. При работе водопровода во всех точках сети должен быть обеспечен свободный напор не менее нормативного.

Свободные напоры в любой точке сети определяют как разность отметок пьезометрических линий и поверхности земли. Пьезометрические отметки для всех расчетных случаев (при хозяйственно-питьевом водопотреблении, при пожаре и др.) вычисляют исходя из обеспечения нормативного свободного напора в диктующей точке. При определении пьезометрических отметок задаются положением диктующей точки, т.е, точки, имеющей минимальный свободный напор.

Обычно диктующая точка расположена в наиболее неблагоприятных условиях как в отношении геодезических отметок (высокие геодезические отметки), так и в отношении удаленности от источника питания (т.е. сумма потерь напора от источника питания до диктующей точки будет наибольшая). В диктующей точке задаются напором, равным нормативному. Если в какой-либо точке сети напор окажется меньше нормативного, то положение диктующей точки задано неверно, В этом случае находят точку, имеющую наименьший свободный напор, принимают ее за диктующую и расчет напоров в сети повторяют.

Расчет системы водоснабжения на работу во время пожара производят в предположении его возникновения в наиболее высоких и удаленных от источников питания точках территории, обслуживаемой водопроводом. По способу тушения пожара водопроводы бывают высокого и низкого давления.

Как правило, при проектировании систем водоснабжения следует принимать противопожарный водопровод низкого давления, за исключением небольших населенных пунктов (менее 5 тыс. человек). Устройство противопожарного водопровода высокого давления должно быть экономически обоснованно,

В водопроводах низкого давления повышение напора производится лишь на время тушения пожара. Необходимое повышение напора создается передвижными пожарными насосами, которые подвозятся к месту пожара и забирают воду из водопроводной сети через уличные гидранты.

Согласно СНиП напор в любой точке сети противопожарного водопровода низкого давления на уровне поверхности земли при пожаротушении должен быть не менее 10 м. Такой напор необходим для предотвращения возможности образования в сети вакуума при отборе воды пожарными насосами, что, в свою очередь, может вызывать проникновение в сеть через неплотности стыков почвенной воды.

Кроме того, некоторый запас давления в сети требуется для работы пожарных автонасосов с целью преодоления значительных сопротивлений во всасывающих линиях.

Система пожаротушения высокого давления (обычно принимается на промышленных объектах) предусматривает подачу к месту пожара установленного нормами пожарного расхода воды и повышение давления в водопроводной сети до величины, достаточной для создания пожарных струй непосредственно от гидрантов. Свободный напор в этом случае должен обеспечивать высоту компактной струи не менее 10 м при полном пожарном расходе воды и расположении ствола брандспойта на уровне наивысшей точки самого высокого здания и подаче воды по пожарным рукавам длиной 120 м:

Нсв пож = Н зд + 10 + ∑h ≈ Н зд + 28 (м)

где Н зд — высота здания, м; h — потери напора в рукаве и стволе брандспойта, м.

В водопроводе высокого давления стационарные пожарные насосы оборудуют автоматикой, обеспечивающей пуск насосов не позднее чем через 5 мин после подачи сигнала о возникновении пожара, Трубы сети должны быть выбраны с учетом повышения давления при пожаре. Максимальный свободный напор в сети объединенного водопровода не должен превышать 60 м водяного столба (0,6 МПа), а в час пожара — 90 м (0,9 МПа).

При значительных перепадах геодезических отметок снабжаемого водой объекта, большой протяженности водопроводных сетей, а также при большой разнице в величинах требуемых отдельными потребителями свободных напоров (например, в микрорайонах с разной этажностью застройки) устраивают зонирование водопроводной сети. Оно может быть обусловлено как техническими, так и экономическими соображениями.

Разделение на зоны производят исходя из следующих условий: в наиболее высоко расположенной точке сети должен быть обеспечен необходимый свободный напор, а в ее нижней (или начальной) точке напор не должен превышать 60 м (0,6 МПа).

По типам зонирования водопроводы бывают с параллельным и последовательным зонированием. Параллельное зонирование водопровода применяют при больших диапазонах геодезических отметок в пределах площади города. Для этого формируют нижнюю (I) и верхнюю (II) зоны, которые обеспечиваются водой соответственно насосными станциями I и II зон с подачей воды с разными напорами по отдельным водоводам. Зонирование осуществляется таким образом, чтобы на нижней границе каждой зоны давление не превышало допустимого предела.

Схема водоснабжения с параллельным зонированием

1 — насосная станция II подъема с двумя группами насосов; 2— насосы II (верхней) зоны; 3 — насосы I (нижней) зоны; 4 — напорно-регулирующие емкости

На пьезометрическом графике в масштабе наносятся рельеф местности, высота присоединенных зданий, напор в сети. По этому графику легко определить напор и располагаемый напор в любой точке сети и абонентских системах.

За горизонтальную плоскость отсчета напоров принят уровень 1 – 1 (см.рис.6.5). Линия П1 – П4 – график напоров подающей линии. Линия О1 – О4 – график напоров обратной линии. Н о1 – полный напор на обратном коллекторе источника; Н сн – напор сетевого насоса; Н ст – полный напор подпиточного насоса, или полный статический напор в тепловой сети; Н к – полный напор в т.К на нагнетательном патрубке сетевого насоса; DH т – потеря напора в теплоприготовительной установке; Н п1 – полный напор на подающем коллекторе, Н п1 = Н к – DH т. Располагаемый напор сетевой воды на коллекторе ТЭЦ Н 1 =Н п1 -Н о1 . Напор в любой точке сети i обозначается как Н п i , H oi – полные напоры в прямом и обратном трубопроводе. Если геодезическая высота в точке i есть Z i , то пьезометрический напор в этой точке есть Н п i – Z i , H o i – Z i в прямом и обратном трубопроводах, соответственно. Располагаемый напор в точке i есть разность пьезометрических напоров в прямом и обратном трубопроводах – Н п i – H oi . Располагаемый напор в тепловой сети в узле присоединения абонента Д есть Н 4 = Н п4 – Н о4 .

Рис.6.5. Схема (а) и пьезометрический график (б) двухтрубной тепловой сети

Потеря напора в подающей линии на участке 1 – 4 есть . Потеря напора в обратной линии на участке 1 – 4 есть . При работе сетевого насоса напор Н ст подпиточного насоса регулируется регулятором давления до Н о1 . При остановке сетевого насоса в сети устанавливается статический напор Н ст, развиваемый подпиточным насосом.

При гидравлическом расчете паропровода можно не учитывать профиль паропровода из-за малой плотности пара. Потери напора у абонентов, например , зависит от схемы присоединения абонента. При элеваторном смешении DН э = 10…15 м, при безэлеваторном вводе – Dн бэ =2…5 м, при наличии поверхностных подогревателей DН п =5…10 м, при насосном смешении DН нс = 2…4 м.

Требования к режиму давления в тепловой сети:

В любой точке системы давление не должно превышать максимально допустимой величины. Трубопроводы системы теплоснабжения рассчитаны на 16 ата, трубопроводы местных систем – на давление 6…7 ата;

Во избежание подсосов воздуха в любой точке системы давление должно быть не менее 1.5 ата. Кроме того, это условие необходимо для предупреждения кавитации насосов;

В любой точке системы давление должно быть не меньше давления насыщения при данной температуре во избежание вскипания воды.

    Предупреждение Недостаточно напора на источнике Delta=X м. Где Delta необходимый напор.

    САМЫЙ НЕБЛАГОПОЛУЧНЫЙ ПОТРЕБИТЕЛЬ: ID=XX.

    Рисунок 283. Сообщение о самом плохом потребителе


    Данное сообщение выводится при нехватке располагаемого напора на потребителе, где DeltaH − значение напора которого не хватает, м, а ID (ХХ) − индивидуальный номер потребителя для которого нехватка напора максимальна.

    Рисунок 284. Сообщение о недостаточном напоре


    Дважды щелкните левой кнопкой мыши по сообщению о самом плохом потребителе: соответствующий потребитель замигает на экране.

    Данная ошибка может вызвана несколькими причинами:

    1. Некорректными данными. Если величина нехватки напора выходит за рамки реальных значений для данной сети, то имеет место ошибка при вводе исходных данных или ошибка при нанесении схемы сети на карту. Следует проверить правильно ли были занесены следующие данные:

      Гидравлическим режимом сети.

      Если ошибки при вводе исходных данных отсутствуют, но нехватка напора существует и имеет реальное для данной сети значение, то в этой ситуации определение причины нехватки и способ ее устранения осуществляет сам специалист, работающий с данной тепловой сетью.

    ID=ХХ "Наименование потребителя" Опорожнение системы отопления (H, м)

    Данное сообщение выводится при недостаточном напоре в обратном трубопроводе для предотвращения опорожнения системы отопления верхних этажей здания, полный напор в обратном трубопроводе должен быть не менее суммы геодезической отметки, высоты здания плюс 5 метров на заполнение системы. Запас напора на заполнение системы может быть изменён в настройках расчета ().

    ХХ − индивидуальный номер потребителя, у которого происходит опорожнение системы отопления, Н - напор, в метрах которого недостаточно;

    ID=ХХ "Наименование потребителя" Напор в обратном трубопроводе выше геодезической отметки на Н, м

    Данное сообщение выдается при давлении в обратном трубопроводе выше допустимого по условиям прочности чугунных радиаторов (более 60 м. вод. ст.), где ХХ - индивидуальный номер потребителя и Н - превышающее геодезическую отметку значение напора в обратном трубопроводе.

    Максимальный напор в обратном трубопроводе можно задать самостоятельно в настройках расчетов. ;

    ID=ХХ "Наименование потребителя" Не подобрать сопло элеватора. Ставим максимальный

    Данное сообщение может появиться при наличии больших нагрузок на отопление или при неверном выборе схемы подключения, которая не соответствует расчетным параметрам. ХХ - индивидуальный номер потребителя, для которого не подобрать сопло элеватора;

    ID=ХХ "Наименование потребителя" Не подобрать сопло элеватора. Ставим минимальный

    Данное сообщение может появиться при наличии очень малых нагрузок на отопление или при неверном выборе схемы подключения, которая не соответствует расчетным параметрам. ХХ − индивидуальный номер потребителя, для которого не подобрать сопло элеватора.

    Предупреждение Z618: ID=XX "XX" Количество шайб на подающем трубопроводе на СО больше 3 (YY)

    Данное сообщение означает что в результате расчета количество шайб, необходимое для регулировки системы более 3 штук.

    Так как минимальный диаметр шайбы по-умолчанию составляет 3 мм (указывается в настройках расчёта «Настройка расчета потерь напора»), а расход на систему отопления потребителя ID=XX очень маленький, то в результате расчета определяется общее количество шайб и диаметр последней шайбы (в базе данных потребителя).

    То есть сообщение вида: Количество шайб на подающем трубопроводе на СО больше 3 (17) предупреждает, что для наладки данного потребителя следует установить 16 шайб диаметром 3 мм и 1 шайбу, диаметр которой определяется в базе данных потребителя.

    Предупреждение Z642: ID=XX Элеватор на ЦТП не работает

    Данное сообщение выводится в результате поверочного расчета и означает, что элеваторный узел не функционирует.

В задачу гидравлического расчета входят:

Определение диаметра трубопроводов;

Определение падения давления (напора);

Определение давлений (напоров) в различных точках сети;

Увязка всех точек сети при статическом и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских системах.

По результатам гидравлического расчета можно решить следующие задачи.

1. Определение капитальных затрат, расхода металла (труб) и основного объема работ по прокладке тепловой сети.

2. Определение характеристик циркуляционных и подпиточных насосов.

3. Определение условий работы тепловой сети и выбора схем присоединения абонентов.

4. Выбор автоматики для тепловой сети и абонентов.

5. Разработка режимов эксплуатации.

a. Схемы и конфигурации тепловых сетей.

Схема тепловой сети определяется размещением источников тепла по отношению к району потребления, характером тепловой нагрузки и видом теплоносителя.

Удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки невелика, поскольку потребители пара – как правило, промышленные потребители – находятся на небольшом расстоянии от источника тепла.

Более сложной задачей является выбор схемы водяных тепловых сетей вследствие большой протяженности, большого количества абонентов. Водяные ТС менее долговечны, чем паровые вследствие большей коррозии, больше чувствительны к авариям из-за большой плотности воды.

Рис.6.1. Однолинейная коммуникационная сеть двухтрубной тепловой сети

Водяные сети разделяют на магистральные и распределительные. По магистральным сетям теплоноситель подается от источников тепла в районы потребления. По распределительным сетям вода подается на ГТП и МТП и к абонентам. Непосредственно к магистральным сетям абоненты присоединяются очень редко. В узлах присоединения распределительных сетей к магистральным устанавливаются секционирующие камеры с задвижками. Секционирующие задвижки на магистральных сетях обычно устанавливаются через 2-3 км. Благодаря установке секционирующих задвижек уменьшаются потери воды при авариях ТС. Распределительные и магистральные ТС с диаметром меньше 700 мм делаются обычно тупиковыми. В случае аварий для большей части территории страны допустим перерыв в теплоснабжении зданий до 24 часов. Если же перерыв в теплоснабжении недопустим, необходимо предусматривать дублирование или закольцовку ТС.

Рис.6.2. Кольцевая тепловая сеть от трех ТЭЦ Рис.6.3. Радиальная тепловая сеть

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ путем соединения их магистралей блокировочными связями. В этом случае получается кольцевая тепловая сеть с несколькими источниками питания. Подобная схема имеет более высокую надежность, обеспечивает передачу резервирующих потоков воды при аварии на каком-либо участке сети. При диаметрах магистралей, отходящих от источника тепла 700 мм и менее, обычно применяют радиальную схему тепловой сети с постепенным уменьшением диаметра трубы по мере удаления от источника и снижения присоединенной нагрузки. Такая сеть наиболее дешевая, но при аварии теплоснабжение абонентов прекращается.


b. Основные расчетные зависимости

Общие принципы гидравлического расчета трубопроводов систем водяного отопления подробно изложены в разделе Системы водяного отопления . Они же применимы и для расчета теплопроводов тепловых сетей, но с учетом некоторых их особенностей. Так в расчетах теплопроводов принимаются турбулентное движение воды (скорость воды больше 0,5 м/с, пара - больше 20-30 м/с, т.е. квадратичная область расчета), значения эквивалентной шероховатости внутренней поверхности стальных труб больших диаметров, мм, принимают для: паропроводов - k = 0,2; водяной сети - k = 0,5; конденсатопроводов - k = 0,5-1,0.

Расчетные расходы теплоносителя по отдельным участкам теплосети определяются как сумма расходов отдельных абонентов с учетом схемы присоединения подогреватели ГВС. Кроме того, необходимо знать оптимальные удельные падения давления в трубопроводах, которые предварительно определяются технико-экономическим расчетом. Обычно их принимают равными 0,3-0,6 кПа (3-6 кгс/м 2) для магистральных тепловых сетей и до 2 кПа (20 кгс/м 2) - для ответвлений.

При гидравлическом расчете решаются следующие задачи: 1) определение диаметров трубопроводов; 2) определение падения давления-напора; 3) определение действующих напоров в различных точках сети; 4) определение допустимых давлений в трубопроводах при различных режимах работы и состояниях теплосети.

При проведении гидравлических расчетов используются схемы и геодезический профиль теплотрассы, с указанием размещения источников теплоснабжения, потребителей теплоты и расчетных нагрузок. Для ускорения и упрощения расчетов вместо таблиц используются логарифмические номограммы гидравлического расчета (рис. 1), а в последние годы - компьютерные расчетные и графические программы.

Рисунок 1.

ПЬЕЗОМЕТРИЧЕСКИЙ ГРАФИК

При проектировании и в эксплуатационной практике для учета взаимного влияния геодезического профиля района, высоты абонентских систем, действующих напоров в тепловой сети широко пользуются пьезометрическими графиками. По ним нетрудно определить напор (давление) и располагаемое давление в любой точке сети и в абонентской системе для динамического и статического состояния системы. Рассмотрим построение пьезометрического графика, при этом будем считать, что напор и давление, падение давления и потеря напора связаны следующими зависимостями: Н = р/γ, м (Па/м); ∆Н = ∆р/ γ, м (Па/м); и h = R/ γ (Па), где Н и ∆Н - напор и потеря напора, м (Па/м); р и ∆р - давление и падение давления, кгс/м 2 (Па); γ - массовая плотность теплоносителя, кг/м 3 ; h и R - удельная потеря напора (безразмерная величина) и удельное падение давления, кгс/м 2 (Па/м).

При построении пьезометрического графика в динамическом режиме за начало координат принимают ось сетевых насосов; взяв эту точку за условный нуль, строят профиль местности по трассе основной магистрали и по характерным ответвлениям (отметки которых отличаются от отметок основной магистрали). На профиле в масштабе вычерчивают высоты присоединяемых зданий, затем, приняв предварительно напор на всасывающей стороне коллектора сетевых насосов Н вс = 10-15 м, наносится горизонталь А 2 Б 4 (рис. 2, а). От точки А 2 откладывают по оси абсцисс длины расчетных участков теплопроводов (с нарастающим итогом), а по оси ординат из концевых точек расчетных участков - потери напора Σ∆Н на этих участках. Соединив верхние точки этих отрезков, получим ломаную линию А 2 Б 2 , которая и будет пьезометрической линией обратной магистрали. Каждый вертикальный отрезок от условного уровня А 2 Б 4 до пьезометрической линии А 2 Б 2 обозначает собой потери напора в обратной магистрали от соответствующей точки до циркуляционной насосной на ТЭЦ. От точки Б 2 в масштабе откладывается вверх необходимый располагаемый напор для абонента в конце магистрали ∆Н аб, который принимается равным 15-20 м и более. Полученный отрезок Б 1 Б 2 характеризует напор в конце подающей магистрали. От точки Б 1 откладывается вверх потеря напора в подающем трубопроводе ∆Н п и проводится горизонтальная линия Б 3 А 1 .

Рисунок 2. а - построение пьезометрического графика; б - пьезометрический график двухтрубной тепловой сети

От линии А 1 Б 3 вниз откладываются потери напора на участке подающей линии от источника теплоты до конца отдельных расчетных участков, и строится аналогично предыдущему пьезометрическая линия A 1 B 1 подающей магистрали.

При закрытых системах ЦТС и равных диаметрах труб подающей и обратной линий пьезометрическая линия A 1 B 1 является зеркальным отображением линии А 2 Б 2 . От точки А, откладывается вверх потеря напора в бойлерной ТЭЦ или в контуре котельной ∆Н б (10-20 м). Давление в подающем коллекторе будет Н н, в обратном - Н вс, а напор сетевых насосов - Н с.н.

Важно отметить, что при непосредственном присоединении местных систем обратный трубопровод теплосети гидравлически связан с местной системой, при этом давление в обратном трубопроводе целиком передается местной системе и наоборот.

При первоначальном построении пьезометрического графика напор на всасывающем коллекторе сетевых насосов Н вс был принят произвольно. Перемещение пьезометрического графика параллельно самому себе вверх или вниз позволяет принять любые давления на всасывающей стороне сетевых насосов и соответственно в местных системах.

При выборе положения пьезометрического графика необходимо исходить из следующих условий:

1. Давление (напор) в любой точке обратной магистрали не должно быть выше допускаемого рабочего давления в местных системах, для новых систем отопления (с конвекторами) рабочее давление 0,1 МПа (10 м вод. ст.), для систем с чугунными радиаторами 0,5-0,6 МПа (50-60 м вод. ст.).

2. Давление в обратном трубопроводе должно обеспечить залив водой верхних линий и приборов местных систем отопления.

3. Давление в обратной магистрали во избежание образования вакуума не должно быть ниже 0,05-0,1 МПа (5-10 м вод. ст.).

4. Давление на всасывающей стороне сетевого насоса не должно быть ниже 0,05 МПа (5 м вод. ст.).

5. Давление в любой точке подающего трубопровода должно быть выше давления вскипания при максимальной (расчетной) температуре теплоносителя.

6. Располагаемый напор в конечной точке сети должен быть равен или больше расчетной потери напора на абонентском вводе при расчетном пропуске теплоносителя.

7. В летний период давление в подающей и обратной магистралях принимают больше статического давления в системе ГВС.

Статическое состояние системы ЦТ. При остановке сетевых насосов и прекращении циркуляции воды в системе ЦТ она переходит из динамического состояния в статическое. В этом случае давления в подающей и обратной линиях теплосети выровняются, пьезометрические линии сливаются в одну - линию статического давления, и на графике она займет промежуточное положение, определяемое давлением подпиточного устройства источника СЦТ.

Давление подпиточного устройства устанавливается персоналом станции или по наивысшей точке трубопровода местной системы, непосредственно присоединенной к теплосети, или по давлению паров перегретой воды в высшей точке трубопровода. Так, например, при расчетной температуре теплоносителя Т 1 = 150 °С давление в высшей точке трубопровода с перегретой водой установится равным 0,38 МПа (38 м вод. ст.), а при Т 1 = 130 °С - 0,18 МПа (18 м вод. ст.).

Однако во всех случаях статическое давление в низкорасположенных абонентских системах не должно превышать допускаемого рабочего давления 0,5-0,6 МПа (5-6 атм). При его превышении эти системы следует переводить на независимую схему присоединения. Понижение статического давления в тепловых сетях может быть осуществлено путем автоматического отключения от сети высоких зданий.

В аварийных случаях, при полной потере электроснабжения станции (остановка сетевых и подпиточных насосов), произойдет прекращение циркуляции и подпитки, при этом давления в обеих линиях теплосети выровняются по линии статического давления, которое начнет медленно, постепенно понижаться в связи с утечкой сетевой воды через неплотности и охлаждения ее в трубопроводах. В этом случае возможно вскипание перегретой воды в трубопроводах с образованием паровых пробок. Возобновление циркуляции воды в таких случаях может привести к сильным гидравлическим ударам в трубопроводах с возможным повреждением арматуры, нагревательных приборов и др. Во избежание такого явления циркуляцию воды в системе ЦТ следует начать только после восстановления путем подпитки теплосети давления в трубопроводах на уровне не ниже статического.

Для обеспечения надежной работы тепловых сетей и местных систем необходимо ограничить возможные колебания давления в тепловой сети допустимыми пределами. Для поддержания требуемого уровня давлений в тепловой сети и местных системах в одной точке тепловой сети (а при сложных условиях рельефа - в нескольких точках) искусственно сохраняют постоянное давление при всех режимах работы сети и при статике с помощью подпиточного устройства.

Точки, в которых давление поддерживается постоянным, называются нейтральными точками системы. Как правило, закрепление давления осуществляется на обратной линии. В этом случае нейтральная точка располагается в месте пересечения обратного пьезометра с линией статического давления (точка НТ на рис. 2, б), поддержание постоянного давления в нейтральной точке и восполнение утечки теплоносителя осуществляются подпиточными насосами ТЭЦ или РТС, КТС через автоматизированное подпиточное устройство. На линии подпитки устанавливаются автоматы-регуляторы, работающие по принципу регуляторов «после себя» и «до себя» (рис. 3).

Рисунок 3. 1 - сетевой насос; 2 - подпиточный насос; 3 - подогреватель сетевой воды; 4 - клапан регулятора подпитки

Напоры сетевых насосов Н с.н принимаются равными сумме гидравлических потерь напора (при максимальном - расчетном расходе воды): в подающем и обратном трубопроводах тепловой сети, в системе абонента (включая вводы в здание), в бойлерной установке ТЭЦ, пиковых котлах ее или в котельной. На источниках теплоты должно быть не менее двух сетевых и двух подпиточных насосов, из которых - по одному резервному.

Величина подпитки закрытых систем теплоснабжения принимается равной 0,25 % объема воды в трубопроводах тепловых сетей и в абонентских системах, присоединенных к теплосети, ч.

При схемах с непосредственным водоразбором величина подпитки принимается равной сумме расчетного расхода воды на ГВС и величины утечки в размере 0,25 % вместимости системы. Вместимость теплофикационных систем определяется по фактическим диаметрам и длинам трубопроводов или по укрупненным нормативам, м 3 /МВт:

Сложившаяся по признаку собственности разобщенность в организации эксплуатации и управления системами теплоснабжения городов самым отрицательным образом сказывается как на техническом уровне их функционирования, так и на их экономической эффективности. Выше отмечалось, что эксплуатацией каждой конкретной системы теплоснабжения занимается несколько организаций (подчас «дочерних» от основной). Однако специфика систем ЦТ, в первую очередь тепловых сетей, определяется жесткой связью технологических процессов их функционирования, едиными гидравлическими и тепловыми режимами. Гидравлический режим системы теплоснабжения, являющийся определяющим фактором функционирования системы, по своей природе крайне неустойчив, что делает системы теплоснабжения трудноуправляемыми по сравнению с другими городскими инженерными системами (электро-, газо-, водоснабжение).

Ни одно из звеньев систем ЦТ (источник теплоты, магистральные и распределительные сети, тепловые пункты) самостоятельно не может обеспечить требуемые технологические режимы функционирования системы в целом, а, следовательно, и конечный результат - надежное и качественное теплоснабжение потребителей. Идеальной в этом смысле является организационная структура, при которой источники теплоснабжения и тепловые сети находятся в ведении одного предприятия-структуры.